1.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
2.The Engineering & Technical College of Chengdu University of Technology, Leshan 614000, China
3.Southwestern Institute of Physics, Chengdu 610225, China
4.Sichuan University of Science & Engineering, Zigong 643000, China
*liumz@cdut.edu.cn
Scan for full text
引用本文
Improved Cohen-Sutherland algorithm for TGS transmission imaging[J]. 核技术(英文版), 2023, 34(6):98
Yu-Cheng Yan, Ming-Zhe Liu, Xing-Yu Li, et al. Improved Cohen-Sutherland algorithm for TGS transmission imaging[J]. Nuclear Science and Techniques, 2023, 34(6):98
Improved Cohen-Sutherland algorithm for TGS transmission imaging[J]. 核技术(英文版), 2023, 34(6):98 DOI: 10.1007/s41365-023-01238-8.
Yu-Cheng Yan, Ming-Zhe Liu, Xing-Yu Li, et al. Improved Cohen-Sutherland algorithm for TGS transmission imaging[J]. Nuclear Science and Techniques, 2023, 34(6):98 DOI: 10.1007/s41365-023-01238-8.
Tomographic Gamma Scanner (TGS), an advanced γ-ray nondestructive analysis technique, can locate and analyze nuclides in radioactive nuclear waste, and TGS can be categorized into two types: e.g., transmission measurement and emission measurement). Specifically, transmission measurements provide the basis for accurate measurement of nonuniform radionuclide content in TGS scanning. The scan data were obtained using the Monte Carlo tool Geant4 simulation, and 25 voxels were divided into five lengths and five widths in a square barrel. In this study, an encoding cropping algorithm based on draped foot vector judgment was adopted to rapidly calculate the voxel trace matrix within a square bucket of nuclear waste, and the transmission images were reconstructed using ordered subset expectation maximization (OSEM). The results indicated that the cropping speed of the improved coding algorithm was significantly higher than that of the original algorithm, and the relative mean deviation (RMD) and root mean square error (RMSE) between the reconstructed attenuation coefficient and the reference standard value tended to decrease with an increase in the cropped line segments in the voxel; the Pearson correlation coefficient (PCC) tended to converge to 1.0. The image quality evaluation parameters of the high media-density materials were better than those of the low media-density materials in the above three indexes. The reconstruction effect was relatively poor for more complex filling materials. When there were more than 10 cropped line segments in the voxel, the reconstruction data generally tended to be stable. The graphical trimming algorithm can rapidly calculate the trace matrix of the scanned voxels; it exhibits the advantages of speed and efficiency and can serve as a novel method to solve the trace matrix of TGS nuclear waste transmission scans.
TGSCohen-SutherlandTransmission scanningTrace matrix
X.T. Ji, S.Y. Luo, Y.H. Huang et al., A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles. Nucl. Sci. Tech. 33, 2 (2022). doi: 10.1007/s41365-022-00989-0http://doi.org/10.1007/s41365-022-00989-0
Y.P. Cheng, R. Han, Z.W. Li et al., Imaging internal density structure of the Laoheishan volcanic cone with cosmic ray muon radiography. Nucl. Sci. Tech. 33, 88 (2022). doi: 10.1007/s41365-022-01072-4http://doi.org/10.1007/s41365-022-01072-4
L. Li, Study on the Transmission and emission reconstruction techniques for tomographic gamma scanner in drummed nuclear waste. Chengdu University of Technology. (2015). (in Chinese)
R.J. Estep, T.H. Prettyman, G.A. Sheppard, Tomographic gamma scanning to assay heterogeneous radioactive waste. Nucl. Scie. Eng. 118(3), 145-152 (1994).doi: 10.13182/nse94-a19380http://doi.org/10.13182/nse94-a19380
Q.H. Zhang, W.H. Hui, D. Wang et al., A novel algorithm for transmission image reconstruction of tomographic gamma scaners. Nucl. Sci. Tech. 21, 177-181 (2010).doi: 10.13538/j.1001-8042/nst.21.177-181http://doi.org/10.13538/j.1001-8042/nst.21.177-181
Y.C. Yan, M.Z. Liu, J.K. Xiong et al., An improved ART algorithm for attenuation coefficient reconstruction of tomographic gamma scanners. Nucl. Instrum. Meth. Phys. Res. Sect. A 1038, 166910 (2022) doi: 10.1016/j.nima.2022.166910http://doi.org/10.1016/j.nima.2022.166910
J.W. Zhao, W.N. Su, An iterative image reconstruction algorithm for SPECT. Nucl. Sc. Tech. 25, 030302 (2014).doi: 10.13538/j.1001-8042/nst.25.030302http://doi.org/10.13538/j.1001-8042/nst.25.030302
J. Kim, S. Jung, J. Moon et al., A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system. Appl. Radiat. Isotop. 70(2), 404-414 (2012). doi: 10.1016/j.apradiso.2011.09.019http://doi.org/10.1016/j.apradiso.2011.09.019
A.J. He, X.G. Tuo, R. Shi et al., An improved OSEM iterative reconstruction algorithm for transmission tomographic gamma scanning. Appl. Radiat. Isotop. 142, 51-55 (2018).doi: 10.1016/j.apradiso.2018.09.001http://doi.org/10.1016/j.apradiso.2018.09.001
Y. Tuaç, Y. Güney, O. Arslan, Parameter estimation of regression model with AR (p) error terms based on skew distributions with EM algorithm. Soft Computing. 24(5), 3309-3330 (2020).doi: 10.1007/s00500-019-04089-xhttp://doi.org/10.1007/s00500-019-04089-x
A.M. El-Khatib, A.A. Thabet, M.A. Elzaher et al., Study on the effect of the self-attenuation coefficient on γ-ray detector efficiency calculated at low and high energy regions. Nucl. Eng. Technol. 46(2), 217 (2014).doi: 10.5516/NET.04.2013.077http://doi.org/10.5516/NET.04.2013.077
M.S. Badawi, M.M. Gouda, S.S. Nafee et al., New algorithm for studying the effect of self attenuation factor on the efficiency of γ-rays detectors. Nucl. Instrum. Meth. Phys. Res. Sect. A 696, 164-170 (2012). doi: 10.1016/j.nima.2012.08.089http://doi.org/10.1016/j.nima.2012.08.089
M.S Badawi, I. Ruskov, M.M. Gouda et al., A numerical approach to calculate the full-energy peak efficiency of HPGe well-type detectors using the effective solid angle ratio. J. Instrum. 9, P07030 (2014).doi: 10.1088/1748-0221/9/07/P07030http://doi.org/10.1088/1748-0221/9/07/P07030
R. Andreev, E. Sofianska, New algorithm for two-dimensional line clipping. Computers Graphics 15, 519-526 (1991).doi: 10.1016/0097-8493(91)90051-Ihttp://doi.org/10.1016/0097-8493(91)90051-I
LIANG Y D, BARSKY B A, A new concept and method for line clipping. ACM. 3(1): 1-22 (1984).doi: 10.1145/357332.357333http://doi.org/10.1145/357332.357333
Q.H. Zhang, H.Z. Sui, F. Lu et al., Reconstruction methods of transmission image in tomographic gamma scanning. Atomic Energy Science and Technology 38, 162-165 (2004).doi: 10.3969/j.issn.1000-6931.2004.02.014http://doi.org/10.3969/j.issn.1000-6931.2004.02.014 (in Chinese)
D. Hearn, M. Pauline Baker, Computer graphics: C Version, Second Edition. (Beijing: Tsinghua University Press, 2004) (in Chinese)
R. Venkataraman, M. Villani, S. Croft et al., An integrated Tomographic Gamma Scanning system for non-destructive assay of radioactive waste. Nucl. Instrum. Meth. Phys. Res. Sect. A 579, 375-379 (2007).doi: 10.1016/j.nima.2007.04.125http://doi.org/10.1016/j.nima.2007.04.125
Nuclear industry standard of the people's Republic of China steel drums for low and medium level radioactive solid waste containers EJ 1042-2014.
A.J. He, Study on iterative reconstruction algorithm of transmission tomographic gamma scanning. Dissertation, Chengdu University of Technology, 2019. doi: 10.26986/d.cnki.gcdlc.2019.001031http://doi.org/10.26986/d.cnki.gcdlc.2019.001031 (in Chinese)
C. Lu, W.G. Gu, N. Qian et al., Study of image reconstruction using dynamic grids in tomographic gamma scanning. Nucl. Sci. Tech. 23, 277-283 (2012).doi: 10.13538/j.1001-8042/nst.23.277-283http://doi.org/10.13538/j.1001-8042/nst.23.277-283
H.M. Hudson, R.S. Larkin, Accelerated image reconstruction using ordered subsets of projection data. IEEE T. Med. Imaging. 13(4), 601-609 (1994) doi: 10.1109/42.363108http://doi.org/10.1109/42.363108
J. Yang, M.Q. Wang, L. Shi et al., Research and comparison on OSEM and its improved reconstruction algorithms. Computer Engineering and Design 36, 2524-2527 (2015).doi: 10.16208/j.issn1000-7024.2015.09.040http://doi.org/10.16208/j.issn1000-7024.2015.09.040 (in Chinese)
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构