1.Department of Physics, Yuncheng University, Yuncheng 044000, China
†wenjiexie@yeah.net
Scan for full text
引用本文
Bayesian inference of the crust-core transition density via the neutron-star radius and neutron-skin thickness data[J]. 核技术(英文版), 2023,34(6):91
Wen-Jie Xie, Zi-Wei Ma, Jun-Hua Guo. Bayesian inference of the crust-core transition density via the neutron-star radius and neutron-skin thickness data[J]. Nuclear Science and Techniques, 2023,34(6):91
Bayesian inference of the crust-core transition density via the neutron-star radius and neutron-skin thickness data[J]. 核技术(英文版), 2023,34(6):91 DOI: 10.1007/s41365-023-01239-7.
Wen-Jie Xie, Zi-Wei Ma, Jun-Hua Guo. Bayesian inference of the crust-core transition density via the neutron-star radius and neutron-skin thickness data[J]. Nuclear Science and Techniques, 2023,34(6):91 DOI: 10.1007/s41365-023-01239-7.
In this work, we perform a Bayesian inference of the crust-core transition density ,ρ,t, of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method. Uniform and Gaussian distributions for the ,ρ,t, prior were adopted in the Bayesian approach. It has a larger probability of having values higher than 0.1 fm,-3, for ,ρ,t, as the uniform prior and neutron-star radius data were used. This was found to be controlled by the curvature ,K,sym, of the nuclear symmetry energy. This phenomenon did not occur if ,K,sym, was not extremely negative, namely,K,sym,>, -200 MeV. The value of ,ρ,t, obtained was 0.075 ,, fm,-3, at a confidence level of 68% when both the neutron-star radius and neutron-skin thickness data were considered. Strong anti-correlations were observed between ,ρ,t, slope ,L, and curvature of the nuclear symmetry energy. The dependence of the three ,L,-,K,sym, correlations predicted in the literature on crust-core density and pressure was quantitatively investigated. The most probable value of 0.08 fm,-3, for ,ρ,t, was obtained from the ,L,–,K,sym, relationship proposed by Holt ,et al, while larger values were preferred for the other two relationships.
Crust-core transition density of neutron starsNeutron-star radiusNeutron-skin thicknessBayesian inference approachL–Ksym correlations
G. Baym, C. Pethick, P. Sutherland, The ground state of matter at high densities: equation of state and stellar models. The Astrophysical Journal 170, 299 (1971). doi: 10.1086/151216http://doi.org/10.1086/151216
N. Paar, C.C. Moustakidis, T. Marketin, et al., Neutron star structure and collective excitations of finite nuclei. Physical Review C 90, 011304 (2014). doi: 10.1103/PhysRevC.90.011304http://doi.org/10.1103/PhysRevC.90.011304
M. Centelles, X. Roca-Maza, X. Vinas, et al., Nuclear symmetry energy probed by neutron skin thickness of nuclei. Physical review letters 102, 122502 (2009). doi: 10.1103/PhysRevLett.102.122502http://doi.org/10.1103/PhysRevLett.102.122502
C. Horowitz, J. Piekarewicz, Neutron star structure and the neutron radius of p 208 b. Physical Review Letters 86, 5647 (2001). doi: 10.1103/PhysRevLett.86.5647http://doi.org/10.1103/PhysRevLett.86.5647
L. Tsaloukidis, C. Margaritis, C.C. Moustakidis, Effects of the equation of state on the core-crust interface of slowly rotating neutron stars. Phys. Rev. C 99, 015803 (2019). doi: 10.1103/PhysRevC.99.015803http://doi.org/10.1103/PhysRevC.99.015803
J. Fang, H. Pais, S. Pratapsi, et al., Crust-core transition of a neutron star: Effects of the symmetry energy and temperature under strong magnetic fields. Phys. Rev. C 95, 062801 (2017). doi: 10.1103/PhysRevC.95.062801http://doi.org/10.1103/PhysRevC.95.062801
C. Gonzalez-Boquera, M. Centelles, X. Viñas, et al., Core-crust transition in neutron stars with finite-range interactions: The dynamical method. Phys. Rev. C 100, 015806 (2019). doi: 10.1103/PhysRevC.100.015806http://doi.org/10.1103/PhysRevC.100.015806
J. Xu, L.W. Chen, B.A. Li, et al., Nuclear constraints on properties of neutron star crusts. The Astrophysical Journal 697, 1549 (2009). doi: 10.1088/0004-637X/697/2/1549http://doi.org/10.1088/0004-637X/697/2/1549
J.M. Lattimer, Y. Lim, Constraining the symmetry parameters of the nuclear interaction. The Astrophysical Journal 771, 51 (2013). doi: 10.1088/0004-637X/771/1/51http://doi.org/10.1088/0004-637X/771/1/51
S.S. Bao, H. Shen, Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars. Phys. Rev. C 91, 015807 (2015). doi: 10.1103/PhysRevC.91.015807http://doi.org/10.1103/PhysRevC.91.015807
C.C. Moustakidis, Effect of the symmetry energy on the location of the inner edge of the neutron star crust. Phys. Rev. C 86, 015801 (2012). doi: 10.1103/PhysRevC.86.015801http://doi.org/10.1103/PhysRevC.86.015801
B.A. Li, M. Magno, Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius, and tidal deformability of canonical neutron stars. Physical Review C 102, 045807 (2020). doi: 10.1103/PhysRevC.102.045807http://doi.org/10.1103/PhysRevC.102.045807
Z.W. Liu, Z. Qian, R.Y. Xing, et al., Nuclear fourth-order symmetry energy and its effects on neutron star properties in the relativistic hartree-fock theory. Phys. Rev. C 97, 025801 (2018). doi: 10.1103/PhysRevC.97.025801http://doi.org/10.1103/PhysRevC.97.025801
H. Pais, A. Sulaksono, B.K. Agrawal, et al., Correlation of the neutron star crust-core properties with the slope of the symmetry energy and the lead skin thickness. Phys. Rev. C 93, 045802 (2016). doi: 10.1103/PhysRevC.93.045802http://doi.org/10.1103/PhysRevC.93.045802
T. Carreau, F. Gulminelli, J. Margueron, Bayesian analysis of the crust-core transition with a compressible liquid-drop model. The European Physical Journal A 55, 188 (2019). doi: 10.1140/epja/i2019-12884-1http://doi.org/10.1140/epja/i2019-12884-1
S. Antić, D. Chatterjee, T. Carreau, et al., Quantifying the uncertainties on spinodal instability for stellar matter through meta-modeling. Journal of Physics G: Nuclear and Particle Physics 46, 065109 (2019). doi: 10.1088/1361-6471/ab1a51http://doi.org/10.1088/1361-6471/ab1a51
W.J. Xie, B.A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars. The Astrophysical Journal 883, 174 (2019). doi: 10.3847/1538-4357/ab3f37http://doi.org/10.3847/1538-4357/ab3f37
J.M. Lattimer, M. Prakash, Neutron star observations: Prognosis for equation of state constraints. Physics reports 442, 109-165 (2007). doi: 10.1016/j.physrep.2007.02.003http://doi.org/10.1016/j.physrep.2007.02.003
P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592-1596 (2002). doi: 10.1126/science.1078070http://doi.org/10.1126/science.1078070
S. Shlomo, V. Kolomietz, G. Colo, Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. The European Physical Journal A-Hadrons and Nuclei 30, 23-30 (2006). doi: 10.1140/epja/i2006-10100-3http://doi.org/10.1140/epja/i2006-10100-3
J. Piekarewicz, Do we understand the incompressibility of neutron-rich matter? Journal of Physics G: Nuclear and Particle Physics 37, 064038 (2010). doi: 10.1088/0954-3899/37/6/064038http://doi.org/10.1088/0954-3899/37/6/064038
B.A. Li, X. Han, Constraining the neutron–proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Physics Letters B 727, 276-281 (2013). doi: 10.1016/j.physletb.2013.10.006http://doi.org/10.1016/j.physletb.2013.10.006
M. Oertel, M. Hempel, T. Klähn, et al., Equations of state for supernovae and compact stars. Reviews of Modern Physics 89, 015007 (2017). doi: 10.1103/RevModPhys.89.015007http://doi.org/10.1103/RevModPhys.89.015007
I. Tews, J.M. Lattimer, A. Ohnishi, et al., Symmetry parameter constraints from a lower bound on neutron-matter energy. The Astrophysical Journal 848, 105 (2017). doi: 10.3847/1538-4357/aa8db9http://doi.org/10.3847/1538-4357/aa8db9
N.B. Zhang, B.J. Cai, B.A. Li, et al., How tightly is the nuclear symmetry energy constrained by a unitary fermi gas? Nuclear Science and Techniques 28, 181 (2017). doi: 10.1007/s41365-017-0336-2http://doi.org/10.1007/s41365-017-0336-2
N.B. Zhang, B.A. Li, J. Xu, Combined constraints on the equation of state of dense neutron-rich matter from terrestrial nuclear experiments and observations of neutron stars. The Astrophysical Journal 859, 90 (2018). doi: 10.3847/1538-4357/aac027http://doi.org/10.3847/1538-4357/aac027
J.W. Negele, D. Vautherin, Neutron star matter at sub-nuclear densities. Nuclear Physics A 207, 298-320 (1973). doi: 10.1016/0375-9474(73)90349-7http://doi.org/10.1016/0375-9474(73)90349-7
M. Warda, X. Vinas, X. Roca-Maza, et al., Neutron skin thickness in the droplet model with surface width dependence: Indications of softness of the nuclear symmetry energy. Physical Review C 80, 024316 (2009). doi: 10.1103/PhysRevC.80.024316http://doi.org/10.1103/PhysRevC.80.024316
B.P. Abbott, R. Abbott, T. Abbott, et al., Gw170817: Measurements of neutron star radii and equation of state. Physical review letters 121, 161101 (2018). doi: 10.1103/PhysRevLett.121.161101http://doi.org/10.1103/PhysRevLett.121.161101
S. De, D. Finstad, J.M. Lattimer, et al., Tidal deformabilities and radii of neutron stars from the observation of gw170817. Physical review letters 121, 091102 (2018). doi: 10.1103/PhysRevLett.121.091102http://doi.org/10.1103/PhysRevLett.121.091102
J.M. Lattimer, A.W. Steiner, Constraints on the symmetry energy using the mass-radius relation of neutron stars. The European Physical Journal A 50, 1-24 (2014). doi: 10.1140/epja/i2014-14040-yhttp://doi.org/10.1140/epja/i2014-14040-y
T.E. Riley, A.L. Watts, S. Bogdanov, et al., A nicer view of psr j0030+ 0451: millisecond pulsar parameter estimation. The Astrophysical Journal Letters 887, L21 (2019). doi: 10.3847/2041-8213/ab481chttp://doi.org/10.3847/2041-8213/ab481c
E. Fonseca, H.T. Cromartie, T.T. Pennucci, et al., Refined mass and geometric measurements of the high-mass psr j0740+ 6620. The Astrophysical Journal Letters 915, L12 (2021). doi: 10.3847/2041-8213/ac03b8http://doi.org/10.3847/2041-8213/ac03b8
D. Adhikari, H. Albataineh, D. Androic, et al., Precision determination of the neutral weak form factor of ca 48. Physical Review Letters 129, 042501 (2022). doi: 10.1103/PhysRevLett.129.042501http://doi.org/10.1103/PhysRevLett.129.042501
D. Adhikari, H. Albataineh, D. Androic, et al., Accurate determination of the neutron skin thickness of pb 208 through parity-violation in electron scattering. Physical review letters 126, 172502 (2021). doi: 10.1103/PhysRevLett.126.172502http://doi.org/10.1103/PhysRevLett.126.172502
M.C. Miller, F. Lamb, A. Dittmann, et al., The radius of psr j0740+ 6620 from nicer and xmm-newton data. The Astrophysical Journal Letters 918, L28 (2021). doi: 10.3847/2041-8213/ac089bhttp://doi.org/10.3847/2041-8213/ac089b
R. Trotta, Bayesian methods in cosmology. arXiv preprint arXiv:1701.01467. doi: 10.48550/arXiv.1701.01467http://doi.org/10.48550/arXiv.1701.01467
J.W. Holt, Y. Lim, Universal correlations in the nuclear symmetry energy, slope parameter, and curvature. Physics Letters B 784, 77-81 (2018). doi: 10.1016/j.physletb.2018.07.038http://doi.org/10.1016/j.physletb.2018.07.038
C. Mondal, B. Agrawal, J. De, et al., Interdependence of different symmetry energy elements. Physical Review C 96, 021302 (2017).
W.J. Xie, B.A. Li, Bayesian inference of the symmetry energy of superdense neutron-rich matter from future radius measurements of massive neutron stars. The Astrophysical Journal 899, 4 (2020). doi: 10.3847/1538-4357/aba271http://doi.org/10.3847/1538-4357/aba271
J. Xu, Constraining isovector nuclear interactions with giant dipole resonance and neutron skin in 208pb from a bayesian approach. Chinese Physics Letters 38, 042101 (2021). doi: 10.1088/0256-307X/38/4/042101http://doi.org/10.1088/0256-307X/38/4/042101
J. Xu, W.J. Xie, B.A. Li, Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in sn 116, 118, 120, 122, 124, 130, 132, pb 208, and ca 48. Physical Review C 102, 044316 (2020). doi: 10.1103/PhysRevC.102.044316http://doi.org/10.1103/PhysRevC.102.044316
S. Tagami, T. Wakasa, M. Yahiro, Slope parameters determined from crex and prex2. Results in Physics 43, 106037 (2022). doi: 10.1016/j.rinp.2022.106037http://doi.org/10.1016/j.rinp.2022.106037
H.L. Wei, X. Zhu, C. Yuan, Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei. Nuclear Science and Techniques 33, 111 (2022). doi: 10.1007/s41365-022-01096-whttp://doi.org/10.1007/s41365-022-01096-w
C.W. Ma, Y.P. Liu, H.L. Wei, et al., Determination of neutron-skin thickness using configurational information entropy. Nuclear Science and Techniques 33, 6 (2022). doi: 10.1007/s41365-022-00997-0http://doi.org/10.1007/s41365-022-00997-0
C. Drischler, K. Hebeler, A. Schwenk, Asymmetric nuclear matter based on chiral two- and three-nucleon interactions. Phys. Rev. C 93, 054314 (2016). doi: 10.1103/PhysRevC.93.054314http://doi.org/10.1103/PhysRevC.93.054314
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构