1.College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
2.School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211800, China
*cjj-njut@njtech.edu.cn
Scan for full text
引用本文
Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection[J]. 核技术(英文版), 2023, 34(6):86
Hui-Lin Xue, Jian-Jie Cheng, Wei-Hao Ji, et al. Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection[J]. Nuclear Science and Techniques, 2023, 34(6):86
Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection[J]. 核技术(英文版), 2023, 34(6):86 DOI: 10.1007/s41365-023-01244-w.
Hui-Lin Xue, Jian-Jie Cheng, Wei-Hao Ji, et al. Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection[J]. Nuclear Science and Techniques, 2023, 34(6):86 DOI: 10.1007/s41365-023-01244-w.
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system (SFS) is essential for practical engineering applications. Based on the principles of thermal and mass balance, this study decoupled the heat transfer processes in the SFS. In accordance with the decoupling conditions we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics (CFD) to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds. The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10 °C or wind speed of 8 m/s. Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model. This study is instructive for the actual operation of an SFS.
Decoupled analysisSeparated heat pipeCAP1400Finned tube radiatorPassive cooling
J. Sun, R. Zhang, M. Wang et al., Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method. ENGRG. 259, 124976 (2022). doi: 10.1016/j.energy.2022.124976http://doi.org/10.1016/j.energy.2022.124976
S. Unger, M. Arlit, M. Beyer et al., Experimental study on the advective heat flux of a heat exchanger for passive cooling of spent fuel pools by temperature anemometry grid sensor. Nucl Eng Des. 379, 111237 (2021). doi: 10.1016/j.nucengdes.2021.111237http://doi.org/10.1016/j.nucengdes.2021.111237
C. Lin, An Advanced Passive Plant AP1000. (China, 2008), pp. 275-277
J. Wan, H. Lin, Y. Tseng, et al., Application of TRACE and CFD in the spent fuel pool of Chinshan nuclear power plant. Appl. Mech. Mater. 145, 78-82 (2011). doi: 10.4028/www.scientific.net/AMM.145.78http://doi.org/10.4028/www.scientific.net/AMM.145.78
M. Wang, H. Zhao, Y. Zhang et al., Research on the designed emergency passive residual heat removal system during the station blackout scenario for CPR1000. Ann. Nucl. Energy 45, 86-93 (2012). doi: 10.1016/j.anucene.2012.03.004http://doi.org/10.1016/j.anucene.2012.03.004
M. Wang, D. Zhang, S. Qi, et al., Accident analyses for china pressurizer reactor with an innovative conceptual design of passive residual heat removal system. Nucl. Eng. Des. 272, 45-52 (2014). doi: 10.1016/j.nucengdes.2014.01.019http://doi.org/10.1016/j.nucengdes.2014.01.019
Z. Xiao, C. Xu, W. Zhuo, et al., Steady characteristic investigation on passive residual heat removal system of Chinese advanced PWR. Nucl. Sci. Tech. 19, 58-64 (2008). doi: 10.1016/S1001-8042(08)60023-8http://doi.org/10.1016/S1001-8042(08)60023-8
M. Wang, A. Manera, V. Petrov, et al., Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR). Ann. Nucl. Energy 145, 106987 (2020). doi: 10.1016/j.anucene.2018.03.014http://doi.org/10.1016/j.anucene.2018.03.014
C. Mueller, P. Tsvetkov, A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis. Ann. Nucl. Energy 160, 108393 (2021). doi: 10.1016/j.anucene.2021.108393http://doi.org/10.1016/j.anucene.2021.108393
Y. Kuang, Q. Yang, W. Wang, Thermal analysis of a heat pipe assisted passive cooling system for spent fuel pools. Int. J. Refrig. 135, 174-188 (2022). doi: 10.1016/j.ijrefrig.2021.12.021http://doi.org/10.1016/j.ijrefrig.2021.12.021
I.I. Sviridenko, Heat exchangers based on low temperature heat pipes for autonomous emergency WWER cooldown systems. Appl Therm Eng. 28:327-334 (2008). doi: 10.1016/j.applthermaleng.2006.02.033http://doi.org/10.1016/j.applthermaleng.2006.02.033
M.H. Kusuma, N. Putra, A.R. Antariksawan et al., Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe. Int. J. Therm. Sci. 126, 162-171 (2018). doi: 10.1016/j.ijthermalsci.2017.12.033http://doi.org/10.1016/j.ijthermalsci.2017.12.033
C. Ye, M.G. Zheng, M.L. Wang et al., The design and simulation of a new spent fuel pool passive cooling system. Ann. Nucl. Energy. 58,124-131 (2013). doi: 10.1016/j.anucene.2013.03.007http://doi.org/10.1016/j.anucene.2013.03.007
M. Wang, S. Qiu, W. Tian, et al., The comparison of designed water-cooled and air-cooled passive residual heat removal system for 300MW nuclear power plant during the feed-water line break scenario. Ann. Nucl. Energy 57, 164-172 (2013). doi: 10.1016/j.anucene.2013.01.027http://doi.org/10.1016/j.anucene.2013.01.027
Y. Li, P. Song, T. Feng et al., Numerical study on improved design of passive residual heat removal system for China pressurizer reactor. Nucl. Eng. Des. 375, 111087 (2021). doi: 10.1016/j.nucengdes.2021.111087http://doi.org/10.1016/j.nucengdes.2021.111087
W. Zheng, W. Wang, R. Zhuan et al., Analysis of Natural Convection Heat Transfer in Spent Fuel Pool Cooled With Heat Pipe. Atomic Energy Sci. Technol. 48:2250-2256 (2014). doi: 10.7538/yzk.2014.48.12.2250http://doi.org/10.7538/yzk.2014.48.12.2250 (in Chinese)
A.A. Bhuiyan, A.K.M.S. Islam, Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment. Int. J. Heat Mass Tran. 101, 38-59 (2016). doi: 10.1016/j.ijheatmasstransfer.2016.05.022http://doi.org/10.1016/j.ijheatmasstransfer.2016.05.022
H-T. Chen, W-L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings. Int. J. Heat Mass Tran. 50, 1750-1761 (2007). doi: 10.1016/j.ijheatmasstransfer.2006.10.021http://doi.org/10.1016/j.ijheatmasstransfer.2006.10.021
H-T. Chen, Y-S. Lin, P-C. Chen et al., Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters. Int. J. Heat Mass Tran. 100, 320-331 (2016). doi: 10.1016/j.ijheatmasstransfer.2016.04.039http://doi.org/10.1016/j.ijheatmasstransfer.2016.04.039
J.R. Senapati, S.K. Dash, S. Roy, Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder. Int. J. Heat Mass Tran. 96, 330-345 (2016). doi: 10.1016/j.ijheatmasstransfer.2016.01.024http://doi.org/10.1016/j.ijheatmasstransfer.2016.01.024
T. Zhou, C. Peng, Z. Wang et al., Application of grey model on analyzing the passive natural circulation residual heat removal system of HTR-10. Nucl. Sci. Tech. 19, 308-313 (2008). doi: 10.1016/S1001-8042(09)60009-9http://doi.org/10.1016/S1001-8042(09)60009-9
S. Unger, E. Krepper, M. Beyer, et al., Numerical optimization of a finned tube bundle heat exchanger arrangement for passive spent fuel pool cooling to ambient air. Nucl. Eng. Des. 361, 110549 (2020). doi: 10.1016/j.nucengdes.2020.110549http://doi.org/10.1016/j.nucengdes.2020.110549
A. Kumar, J.B. Joshi, A.K. Nayak et al., 3D CFD simulations of air cooled condenser-III: Thermal–hydraulic characteristics and design optimization under forced convection conditions. Int. J. Heat Mass Tran. 93, 1227-1247 (2016). doi: 10.1016/j.ijheatmasstransfer.2015.10.048http://doi.org/10.1016/j.ijheatmasstransfer.2015.10.048
S. Unger, M. Beyer, J. Thiele et al., Experimental study of the natural convection heat transfer performance for finned oval tubes at different tube tilt angles. Exp. Therm. Fluid Sci. 105, 100-108 (2019). doi: 10.1016/j.expthermflusci.2019.03.016http://doi.org/10.1016/j.expthermflusci.2019.03.016
S. Unger, M. Beyer, M. Arlit et al., An experimental investigation on the air-side heat transfer and flow resistance of finned short oval tubes at different tube tilt angles. Int J Therm Sci. 140, 225-237 (2019). doi: 10.1016/j.ijthermalsci.2019.02.045http://doi.org/10.1016/j.ijthermalsci.2019.02.045
Z. Xiong, C. Ye, M. Wang et al., Experimental study on the sub-atmospheric loop heat pipe passive cooling system for spent fuel pool. Prog. Nucl. Energ. 79, 40-47 (2015). doi: 10.1016/j.anucene.2015.03.045http://doi.org/10.1016/j.anucene.2015.03.045
Z. Xiong, H. Gu, M. Wang, et al., The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool. Nucl. Eng. Des. 280, 262-268 (2014). doi: 10.1016/j.nucengdes.2014.09.022http://doi.org/10.1016/j.nucengdes.2014.09.022
M. Wang, Y. Wang, W. Tian et al., Recent progress of CFD applications in PWR thermal hydraulics study and future directions. Ann. Nucl. Energy 150, 107836 (2021). doi: 10.1016/j.anucene.2020.107836http://doi.org/10.1016/j.anucene.2020.107836
Z. Xiong, M. Wang, H. Gu et al., Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool. Ann. Nucl. Energy 83, 258-263 (2015). doi: 10.1016/j.pnucene.2014.10.015http://doi.org/10.1016/j.pnucene.2014.10.015
W-T. Li, X-K. Meng, H-Z. Bian et al., Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube. Nucl. Sci. Tech. 33, 100 (2022). doi: 10.1007/s41365-022-01090-2http://doi.org/10.1007/s41365-022-01090-2
Z. Lai, Air Cooled Heat Exchanger. China Petrochemical Press, 2010.
B. Launder, D.B. Spalding, The numerical computation of turbulent flow computer methods. Comput. Method Appl. M. 3, 269-289 (1974). doi: 10.1016/0045-7825(74)90029-2http://doi.org/10.1016/0045-7825(74)90029-2
Y. Deng, Numerical Simulation of Natural Convection Heat Transfer in Spent Fuel Pools and Structural Optimization. Dissertation. Shandong University; 2018.(in Chinese)
K. Qiao, H. Tao, Y. Li, et al., Numerical study on long-term passive heat removal of EPRHR cooling water tank (CWT) using heat pipe heat exchanger. Ann. Nucl. Energy 175, 109212 (2022). doi: 10.1016/j.anucene.2022.109212http://doi.org/10.1016/j.anucene.2022.109212
S. He, M. Wang, W. Tian, et al., Development of an OpenFOAM solver for numerical simulations of shell-and-tube heat exchangers based on porous media model. Appl. Therm. Eng. 210, 118389 (2022). doi: 10.1016/j.applthermaleng.2022.118389http://doi.org/10.1016/j.applthermaleng.2022.118389
M. Wang, A. Manera, M.J. Memmott et al., Preliminary design of the I2S-LWR containment system. Ann. Nucl. Energy 145, 106065 (2020). doi: 10.1016/j.anucene.2018.03.014http://doi.org/10.1016/j.anucene.2018.03.014
W. Fu, X. Li, X. Wu, et al., Investigation of a long term passive cooling system using two-phase thermosyphon loops for the nuclear reactor spent fuel pool. Ann. Nucl. Energy 85, 346-356 (2015). doi: 10.1016/j.anucene.2015.05.026http://doi.org/10.1016/j.anucene.2015.05.026
Z-X. Gu, Q-X. Zhang, Y. Gu et al., Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor. Nucl. Sci. Tech. 32, 52 (2021). doi: 10.1007/s41365-021-00887-xhttp://doi.org/10.1007/s41365-021-00887-x
Y. Wu, J. Cheng, H. Zhu et al., Experimental study on heat transfer characteristics of separated heat pipe with compact structure for spent fuel pool. Ann. Nucl. Energy 181, 109580 (2023). doi: 10.1016/j.anucene.2022.109580http://doi.org/10.1016/j.anucene.2022.109580
Q. Li, H. Li, X. Dong et al., Evaluation of wind energy in Weihai City of Shandong Province based on numerical simulation. J. Anhui Agric. Sci. 40(1), 457-463 (2012). (in Chinese)
P. Wang, J. Cheng, F. Yuan et al., Application of time-series model on the temperature variation analysis in Weihai in recent 50 years. South-to-North Water Transfers Water Sci. 13, 1051-1055 (2015). (in Chinese)
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构