1.All Russian Research Institute for Nuclear Power Plants Operation JSC 25 Ferganskaya Str., 109507 Moscow, Russia
2.HySA Center, Faculty of Engineering, North-West University, Potchefstroom, South Africa, 2520
3.State Atomic Energy Corporation Rosatom, 24 Bolshaya Ordynka Str. 119017 Moscow, Russia
Scan for full text
Passive electrochemical hydrogen recombiner for hydrogen safety systems: Prospects[J]. 核技术(英文版), 2023,34(6):89
Avdeenkov A. V., Bessarabov D. G., Zaryugin D. G.. Passive electrochemical hydrogen recombiner for hydrogen safety systems: Prospects[J]. Nuclear Science and Techniques, 2023,34(6):89
Passive electrochemical hydrogen recombiner for hydrogen safety systems: Prospects[J]. 核技术(英文版), 2023,34(6):89 DOI: 10.1007/s41365-023-01245-9.
Avdeenkov A. V., Bessarabov D. G., Zaryugin D. G.. Passive electrochemical hydrogen recombiner for hydrogen safety systems: Prospects[J]. Nuclear Science and Techniques, 2023,34(6):89 DOI: 10.1007/s41365-023-01245-9.
This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation (as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants (NPPs)). The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation (the 'ignition’ limit). Thus, it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions, including beyond-design accidents. An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly (MEA) at various hydrogen concentrations near the catalytic surfaces of the electrodes, and the corresponding current–voltage characteristics were recorded. The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance (delivery of electrical power) over a wide range of hydrogen concentrations.
RecombinerCatalytic ignitionHydrogen explosion safetyHydrogen fuel cellMembrane electrode assembly
INTERNATIONAL ATOMIC ENERGY AGENCY, Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants, IAEA-TECDOC-1661, IAEA, Vienna (2011)
F. Ferroni, P. Collins, L. Schiel, Containment protection with hydrogen recombiners. Atw Atomwirtschaft, Atomtechnik, 39(7), 513-514 (1994).
E-A. Reinecke, A. Bentaib, S. Kelm et al., C. Open issues in the applicability of recombiner experiments and modelling to reactor simulations. Prog. Nucl. Energ., 52(1), 136-147 (2010). doi: 10.1016/j.pnucene.2009.09.010http://doi.org/10.1016/j.pnucene.2009.09.010
A.V. Avdeenkov, V. Sergeev, A.V. Stepanov et al., Math hydrogen catalytic recombiner: Engineering model for dynamic full-scale calculations. Int. J. Hydrogen Energ., 43(52), 23523-23537 (2018). doi: 10.1016/j.ijhydene.2018.10.212http://doi.org/10.1016/j.ijhydene.2018.10.212
M. Rinnemo, O. Deutchmann, F. Behrendt et al., Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum, Combust. Flame, 111(4), 312-326 (1997). doi: 10.1016/S0010-2180(97)00002-3http://doi.org/10.1016/S0010-2180(97)00002-3
C. Appel, J. Mantzaras, R. Schaeren et al., An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum, Combust. Flame, 28(4), 340-368 (2002). doi: 10.1016/S0010-2180(01)00363-7http://doi.org/10.1016/S0010-2180(01)00363-7
R.W. Schefer, Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: ΙΙ: Numerical model, Combust. Flame, 45, 171-190 (1982)
RET(Russkie energeticheskie technologii), https://retech.ru/pkrvhttps://retech.ru/pkrv (in Russian)
Framatome, Hydrogen Control System: mixers, igniters, recombiners. https://www.framatome.com/solutions-portfolio/portfolio/product?product=A0640https://www.framatome.com/solutions-portfolio/portfolio/product?product=A0640
D.G. Zaryugin, Patent RU-2599145-C1, 10 June 2015
M. Klauck, E.-A. Reinecke, S. Kelm et al., Passive auto-catalytic recombiners operation in the presence of hydrogen and carbon monoxide: Experimental study and model development, Nucl. Eng. Des., 266, 137-147 (2014). doi: 10.1016/j.nucengdes.2013.10.021http://doi.org/10.1016/j.nucengdes.2013.10.021
E. Bachellerie, F. Arnould, M. Auglaire et al., Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151-165 (2003). doi: 10.1016/S0029-5493(02)00330-8http://doi.org/10.1016/S0029-5493(02)00330-8
D.M. Prabhudharwadkar, P.A. Aghalayam, K.N. Lyer, Simulation of hydrogen mitigation in catalytic recombiner. Part-Ι: Surface chemistry modelling, Nucl. Eng. Des., 241, 1746-1757 (2011). doi: 10.1016/j.nucengdes.2010.09.032http://doi.org/10.1016/j.nucengdes.2010.09.032
A.A. Malakhov, M.H. du Toit, S.P. du Preez, et al., Temperature profile mapping over a catalytic unit of a hydrogen passive autocatalytic recombiner: Experimental and CFD study, Energ. Fuel. 34(9), 11637-11649 (2020). doi: 10.1021/acs.energyfuels.0c01582http://doi.org/10.1021/acs.energyfuels.0c01582
R. O’Hayre, S.-W. Cha, W.G. Colella, F.G. Prinz, Fuel Cell Fundamentals, 3rd edn. (John Wiley & Sons, 2016)
M.J. Lampinen, M. Famina, Analysis of free energy and entropy changes for half-cell reactions. J. Electrochem. Soc. 140(2), 3537-3546 (1993). doi: 10.1149/1.2221123http://doi.org/10.1149/1.2221123
Bu-Er Wang, Shi-Chao Zhang, Zhen Wang, et al. Numerical analysis of supersonic jet flow and dust transport induced by air ingress in a fusion reactor. J. Nuclear Science and Techniques 32(7):73(2021) doi: 10.1007/s41365-021-00912-zhttp://doi.org/10.1007/s41365-021-00912-z.
Yu-Wei Guo, Jing-Yu Qin, Jian-Hua Hu, et al. Molecular rotation-caused autocorrelation. J. Nuclear Science and Techniques 31(6):53(2020) doi: 10.1007/s41365-020-00767-whttp://doi.org/10.1007/s41365-020-00767-w.
Noori-kalkhoran, O., Jafari-ouregani, N., Gei, M. et al. Simulation of hydrogen distribution and effect of Engineering Safety Features (ESFs) on its mitigation in a WWER-1000 containment. Nuclear Science and Techniques 30, 97 (2019) doi: 10.1007/s41365-019-0624-0http://doi.org/10.1007/s41365-019-0624-0
Yang, Z., Wang, Y., Zhou, NY. et al. Improvements to hydrogen depleting and monitoring system for Chinese Pressurized Reactor 1000. Nuclear Science and Techniques 28, 131 (2017) doi: 10.1007/s41365-017-0287-7http://doi.org/10.1007/s41365-017-0287-7
Raman R.K, Iyer K.N, Ravva S. R. CFD studies of hydrogen mitigation by recombiner using correlations of reaction rates obtained from detailed mechanism. Nuclear Engineering and Design 360, 110528 (2020) doi: 10.1016/j.nucengdes.2020.110528http://doi.org/10.1016/j.nucengdes.2020.110528
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构