1.Key Laboratory of Nuclear Physics and Ion‑beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
2.Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China
*mayugang@fudan.edu.cn
Scan for full text
引用本文
Hypernuclei as a laboratory to test hyperon-nucleon interactions[J]. 核技术(英文版), 2023, 34(6):97
Yu-Gang Ma. Hypernuclei as a laboratory to test hyperon-nucleon interactions[J]. Nuclear Science and Techniques, 2023, 34(6):97
Hypernuclei as a laboratory to test hyperon-nucleon interactions[J]. 核技术(英文版), 2023, 34(6):97 DOI: 10.1007/s41365-023-01248-6.
Yu-Gang Ma. Hypernuclei as a laboratory to test hyperon-nucleon interactions[J]. Nuclear Science and Techniques, 2023, 34(6):97 DOI: 10.1007/s41365-023-01248-6.
H.T. Cromartie, et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astron. 4, 72-76 (2019). doi: 10.1038/s41550-019-0880-2http://doi.org/10.1038/s41550-019-0880-2
Y. Zhang, D. Zhang, X. Luo, Experimental study of the qcd phase diagram in relativistic heavy-ion collisions. Nuclear Techniques (in Chinese) 46, 040001 (2023). doi: 10.11889/j.0253-3219.2023.hjs.46.040001http://doi.org/10.11889/j.0253-3219.2023.hjs.46.040001
K. Sun, L. Chen, C.M. Ko, et al., Light nuclei production and qcd phase transition in heavy-ion collisions. Nuclear Techniques (in Chinese) 46, 040012 (2023). doi: 10.11889/j.0253-3219.2023.hjs.46.040012http://doi.org/10.11889/j.0253-3219.2023.hjs.46.040012
B.I. Abelev, et al., Observation of an antimatter hypernucleus. Science 328, 58 (2010). doi: 10.1126/science.1183980http://doi.org/10.1126/science.1183980
H. Agakishiev, et al., Observation of the antimatter helium-4 nucleus. Nature 473, 353 (2011). doi: 10.1038/nature10079http://doi.org/10.1038/nature10079
J. Adam, et al., Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton. Nature Physics 16, 409 (2020). doi: 10.1038/s41567-020-0799-7http://doi.org/10.1038/s41567-020-0799-7
J. Chen, D. Keane, Y.G. Ma, et al., Antinuclei in heavy-ion collisions. Phys. Rep. 760, 1 (2018). doi: 10.1016/j.physrep.2018.07.002http://doi.org/10.1016/j.physrep.2018.07.002
M. Abdulhamid, B. Aboona, J. Adam, et al., Beam energy dependence of triton production and yield ratio (). Phys. Rev. Lett. 130, 202301 (2023). doi: 10.1103/PhysRevLett.130.202301http://doi.org/10.1103/PhysRevLett.130.202301
C.M. Ko, Searching for qcd critical point with light nuclei. Nucl. Sci. Tech. 34, 80 (2023). doi: 10.1007/s41365-023-01231-1http://doi.org/10.1007/s41365-023-01231-1
L. Adamczyk, et al., Measurement of interaction between antiprotons. Nature 527, 345 (2015). doi: 10.1038/nature15724http://doi.org/10.1038/nature15724
S. Acharya, et al., Unveiling the strong interaction among hadrons at the lhc. Nature 588, 232 (2020). doi: 10.1038/s41586-020-3001-6http://doi.org/10.1038/s41586-020-3001-6
M.S. Abdallah, et al., Pattern of global spin alignment of φ and k*0 mesons in heavy-ion collisions. Nature 614, 244 (2023). doi: 10.1038/s41586-022-05557-5http://doi.org/10.1038/s41586-022-05557-5
X.N. Wang, Vector meson spin alignment by the strong force field. Nucl. Sci. Tech. 34, 15 (2023). doi: 10.1007/s41365-023-01166-7http://doi.org/10.1007/s41365-023-01166-7
J. Chen, Z.T. Liang, Y.G. Ma, et al., Global spin alignment of vector mesons and strong force fields in heavy- ion collisions. Science Bulletin 68, 874 (2023). doi: 10.1016/j.scib.2023.04.001http://doi.org/10.1016/j.scib.2023.04.001
A. Andronic, P. Braun-Munzinger, J. Stachel, et al., Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203-207 (2011). doi: 10.1016/j.physletb.2011.01.053http://doi.org/10.1016/j.physletb.2011.01.053
J. Steinheimer, et al., Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence. Phys. Lett. B 714, 85-91 (2012). doi: 10.1016/j.physletb.2012.06.069http://doi.org/10.1016/j.physletb.2012.06.069
J. Aichelin, et al., Parton-hadron-quantum-molecular dynamics: A novel microscopic n-body transport approach for heavy-ion collisions, dynamical cluster formation, and hypernuclei production. Phys. Rev. C 101, 044905 (2020). doi: 10.1103/PhysRevC.101.044905http://doi.org/10.1103/PhysRevC.101.044905
C.M. Hung, E.V. Shuryak, Hydrodynamics near the QCD phase transition: Looking for the longest lived fireball. Phys. Rev. Lett. 75, 4003-4006 (1995). doi: 10.1103/PhysRevLett.75.4003http://doi.org/10.1103/PhysRevLett.75.4003
J. Brachmann, et al., Antiflow of nucleons at the softest point of the EoS. Phys. Rev. C 61, 024909 (2000). doi: 10.1103/PhysRevC.61.024909http://doi.org/10.1103/PhysRevC.61.024909
J. Steinheimer, J. Auvinen, H. Petersen, et al., Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions. Phys. Rev. C 89, 054913 (2014). doi: 10.1103/PhysRevC.89.054913http://doi.org/10.1103/PhysRevC.89.054913
Y. Nara, H. Niemi, A. Ohnishi, et al., Examination of directed flow as a signature of the softest point of the equation of state in QCD matter. Phys. Rev. C 94, 034906 (2016). doi: 10.1103/PhysRevC.94.034906http://doi.org/10.1103/PhysRevC.94.034906
T.Z. Yan, Y. Ma, X. Cai, et al., Scaling of anisotropic flow and momentum-space densities for light particles in intermediate energy heavy ion collisions. Phys. Lett. B 638, 50 (2006). doi: 10.1016/j.physletb.2006.05.018http://doi.org/10.1016/j.physletb.2006.05.018
C.Z. Shi, Y.G. Ma, alpha-clustering effect on flows of direct photons in heavy-ion collisions. Nucl. Sci. Tech. 32, 66 (2021). doi: 10.1007/s41365-021-00897-9http://doi.org/10.1007/s41365-021-00897-9
J.H. Chen, Y.G. Ma, G.L. Ma, et al., Elliptic flow of φ meson and strange quark collectivity at rhic. Phys. Rev. C 74, 064902 (2006). doi: 10.1103/PhysRevC.74.064902http://doi.org/10.1103/PhysRevC.74.064902
H. Wang, J.H. Chen, Anisotropy flows in pb-pb collisions at lhc energies from parton scatterings with heavy quark trigger. Nucl. Sci. Tech. 33, 15 (2022). doi: 10.1007/s41365-022-00999-yhttp://doi.org/10.1007/s41365-022-00999-y
L.X. Han, G.L. Ma, Y.G. Ma, et al., Initial fluctuation effect on harmonic flows in high-energy heavy-ion collisions. Phys. Rev. C 84, 064907 (2011). doi: 10.1103/PhysRevC.84.064907http://doi.org/10.1103/PhysRevC.84.064907
S.W. Lan, S. Shu-Su, Anisotropic flow in high baryon density region. Nucl. Sci. Tech. 33, 21 (2022). doi: 10.1007/s41365-022-01006-0http://doi.org/10.1007/s41365-022-01006-0
M. Wang, J.Q. Tao, H. Zheng, et al., Number-of-constituent-quark scaling of elliptic flow: a quantitative study. Nucl. Sci. Tech. 33, 37 (2022). doi: 10.1007/s41365-022-01019-9http://doi.org/10.1007/s41365-022-01019-9
L. Adamczyk, et al., Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett. 112, 162301 (2014). doi: 10.1103/PhysRevLett.112.162301http://doi.org/10.1103/PhysRevLett.112.162301
L. Adamczyk, et al., Beam-Energy Dependence of Directed Flow of , , , and φ in Au+Au Collisions. Phys. Rev. Lett. 120, 062301 (2018). doi: 10.1103/PhysRevLett.120.062301http://doi.org/10.1103/PhysRevLett.120.062301
J. Adam, et al., Beam-energy dependence of the directed flow of deuterons in Au+Au collisions. Phys. Rev. C 102, 044906 (2020). doi: 10.1103/PhysRevC.102.044906http://doi.org/10.1103/PhysRevC.102.044906
L. Adamczyk, et al., Elliptic flow of identified hadrons in Au+Au collisions at = 7.7-62.4 GeV. Phys. Rev. C 88, 014902 (2013). doi: 10.1103/PhysRevC.88.014902http://doi.org/10.1103/PhysRevC.88.014902
J. Adam, et al., Flow and interferometry results from Au+Au collisions at =4.5 GeV. Phys. Rev. C 103, 034908 (2021). doi: 10.1103/PhysRevC.103.034908http://doi.org/10.1103/PhysRevC.103.034908
A. Bzdak, et al., Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan. Phys. Rept. 853, 1-87 (2020). doi: 10.1016/j.physrep.2020.01.005http://doi.org/10.1016/j.physrep.2020.01.005
B.E. Aboona, et al., Observation of Directed Flow of Hypernuclei and in =3 GeV Au+Au Collisions at RHIC. Phys. Rev. Lett. 130, 212301 (2023). doi: 10.1103/PhysRevLett.130.212301http://doi.org/10.1103/PhysRevLett.130.212301
M. Anderson, et al., The Star time projection chamber: A Unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Meth. A 499, 659-678 (2003). doi: 10.1016/S0168-9002(02)01964-2http://doi.org/10.1016/S0168-9002(02)01964-2
I. Kisel, Event Topology Reconstruction in the CBM Experiment. J. Phys. Conf. Ser. 1070, 012015 (2018). doi: 10.1088/1742-6596/1070/1/012015http://doi.org/10.1088/1742-6596/1070/1/012015
M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR. Ph.D. thesis, Frankfurt U. (2016)
H. Masui, A. Schmah, A.M. Poskanzer, Event plane resolution correction for azimuthal anisotropy in wide centrality bins. Nucl. Instrum. Meth. A 833, 181-185 (2016). doi: 10.1016/j.nima.2016.07.037http://doi.org/10.1016/j.nima.2016.07.037
B.E. Aboona, et al., Observation of Directed Flow of Hypernuclei and in = 3 GeV 3 Au+Au Collisions at RHIC. Phys. Rev. Lett. 130, 212301 (2023). doi: 10.1103/PhysRevLett.130.212301http://doi.org/10.1103/PhysRevLett.130.212301
T. Neidig, K. Gallmeister, C. Greiner, et al., Towards solving the puzzle of high temperature light (anti)-nuclei production in ultra-relativistic heavy ion collisions. Phys. Lett. B 827, 136891 (2022). doi: 10.1016/j.physletb.2022.136891http://doi.org/10.1016/j.physletb.2022.136891
L. Zhang, S. Zhang, Y.G. Ma, Production of ΩNN and ΩΩN in ultra-relativistic heavy-ion collisions. Eur. Phys. J. C 82, 416 (2022). doi: 10.1140/epjc/s10052-022-10336-7http://doi.org/10.1140/epjc/s10052-022-10336-7
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构