1.Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Guang Mo, mog@ihep.ac.cn
* Zhong-Hua Wu, wuzh@ihep.ac.cn
Scan for full text
引用本文
Correction of distorted X-ray absorption spectra collected with capillary sample cell[J]. 核技术(英文版), 2023, 34(7):106
Hao Wang, Yue-Cheng Lai, Jia-Jun Zhong, et al. Correction of distorted X-ray absorption spectra collected with capillary sample cell[J]. Nuclear Science and Techniques, 2023, 34(7):106
Correction of distorted X-ray absorption spectra collected with capillary sample cell[J]. 核技术(英文版), 2023, 34(7):106 DOI: 10.1007/s41365-023-01253-9.
Hao Wang, Yue-Cheng Lai, Jia-Jun Zhong, et al. Correction of distorted X-ray absorption spectra collected with capillary sample cell[J]. Nuclear Science and Techniques, 2023, 34(7):106 DOI: 10.1007/s41365-023-01253-9.
In certain exceptional cases, capillary samples must be used to measure X-ray absorption spectra (XAS). However, the inhomogeneous thickness of capillary samples causes XAS distortion. This study discusses the distortion and correction of the XAS curve caused by the inhomogeneous thickness of capillary samples. The relationship between the distorted XAS curve ,μ,’,d,eq, (measured values) and the real absorption coefficient ,μ,s,d,eq, (true values) of the sample was established. The distortion was slight and negligible when the vertical size (2,h,) of the X-ray beam spot was smaller than 60% of the capillary tube's inner diameter (2,R,in,). When ,h,/,R,in,>,1, X-ray leakage is inevitable and should be avoided during measurement. Partial X-ray leakage caused by an X-ray beam spot size larger than the inner diameter of the capillary tube leads to serious compressed distortion of the XAS curve. When ,h,/,R,in,<,1, the distorted XAS data were well corrected. Possible errors and their influence on the corrected XAS are also discussed. Simulations and corrections for distortions verify the feasibility and effectiveness of the corrected method.
XASCapillaryCompression distortionCorrectionPython
Z. Sun, Q. Liu, T. Yao et al., X-ray absorption fine structure spectroscopy in nanomaterials. China. Mater. 58, 313-341 (2015). doi: 10.1007/s40843-015-0043-4http://doi.org/10.1007/s40843-015-0043-4
S.Q. Wei, Z.H. Sun, Z.Y. Pan et al. XAFS applications in semiconductors. Nucl. Sci. Tech. 17, 370-388 (2006). doi: 10.1016/S1001-8042(07)60006-2http://doi.org/10.1016/S1001-8042(07)60006-2
H. Zhu, Y. Huang, H. Zhu et al. In situ probing multiple-scale structures of energy materials for Li-ion batteries. Small Methods 4, 1900223 (2020). doi: 10.1002/smtd.201900223http://doi.org/10.1002/smtd.201900223
W. Li, M. Li, Y. Hu et al. Synchrotron-based X-ray absorption fine Structures, X-ray diffraction, and X-ray microscopy techniques applied in the study of lithium secondary batteries. Small. Methods 2, 1700341 (2018). doi: 10.1002/smtd.201700341http://doi.org/10.1002/smtd.201700341
Z. L. Gong, Y. Yang, The application of synchrotron X-ray techniques to the study of rechargeable batteries. J. Energy. Chem. 27, 1566-1583 (2018). doi: 10.1016/j.jechem.2018.03.020http://doi.org/10.1016/j.jechem.2018.03.020
Q. Yang, Q. Li, Z. Liu et al., Dendrites in Zn-based batteries. Adv. Mater. 32, 2001854 (2020). doi: 10.1002/adma.202001854http://doi.org/10.1002/adma.202001854
Z.B. Wu, W.K. Pang, L.B. Chen et al., In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batteries Supercaps 4, 1547-1566 (2021). doi: 10.1002/batt.202100006http://doi.org/10.1002/batt.202100006
X. P. Sun, F. F. Sun, S. Q. Gu et al., Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in-situ quick X-ray absorption spectroscopy. Nucl. Sci. Tech. 28, 21 (2017). doi: 10.1007/s41365-016-0170-yhttp://doi.org/10.1007/s41365-016-0170-y
Q. Chang, K. Li, C. H. Zhang et al., XAFS studies of Fe−SiO2 Fischer-Tropsch catalyst during activation in CO, H2, and synthesis gas. ChemCatChem. 11, 2206-2216 (2019). doi: 10.1002/cctc.201801807http://doi.org/10.1002/cctc.201801807..
D. B. Liu, Q. He, S. Q. Ding et al., Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy. Mater. 10, 2001482 (2020). doi: 10.1002/aenm.202001482http://doi.org/10.1002/aenm.202001482..
X.Y. Wang, X.B. Peng, H.Y. Ran et al., Influence of Ru substitution on the properties of LaCoO3 catalysts for ammonia synthesis: XAFS and XPS studies. Ind. Eng. Chem. Res. 57, 17375-17383 (2018). doi: 10.1021/acs.iecr.8b04915http://doi.org/10.1021/acs.iecr.8b04915
Z.H. Wu, Y.P. Liu, X.Q. Xing et al., A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements. Nano Res. 116, 1123-1131 (2022). doi: 10.1007/s12274-022-4742-3http://doi.org/10.1007/s12274-022-4742-3
X. Li, H. Y. Wang, H. Yang et al., In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2, 1700395 (2018). doi: 10.1002/smtd.201700395http://doi.org/10.1002/smtd.201700395
H. E. Piskorska, D. A. Kowalska, P. Kraszkiewicz et al., In situ XAFS study of highly reducible mixed oxide catalysts Ce0.9Pd0.1O2-δ and Ce0.7Yb0.2Pd0.1O2-δ. J. Alloys Compd. 831, 154703 (2020). doi: 10.1016/j.jallcom.2020.154703http://doi.org/10.1016/j.jallcom.2020.154703
A. Bansode, G. Guilera, V. Cuartero et al., Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando X-ray absorption spectroscopy. Rev. Sci. Instrum. 85, 084105 (2014). doi: 10.1063/1.4893351http://doi.org/10.1063/1.4893351
H. Wang, G. Mo, J, J, Zhong et al., A capillary sample cell used for in-situ SAXS, XRD, and XAFS measurements during hydrothermal synthesis. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1031, 166605 (2022). doi: 10.1016/j.nima.2022.166605http://doi.org/10.1016/j.nima.2022.166605
T. G. Mayerhöfer, S. Pahlow, J. Popp., The Bouguer-Beer-Lambert law: Shining light on the obscure. ChemPhysChem. 21, 2029-2046 (2020). doi: 10.1002/cphc.202000464http://doi.org/10.1002/cphc.202000464
H. S. Yu, X. J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015). doi: 10.13538/j.1001-8042/nst.26.050102http://doi.org/10.13538/j.1001-8042/nst.26.050102
R. Y. Lu, Q. Gao, S. Q. Gu et al., Data-collection system for high-throughput X-ray absorption fine structure measurements. Nucl. Sci. Tech. 27, 82 (2016). doi: 10.1007/s41365-016-0084-8http://doi.org/10.1007/s41365-016-0084-8
P. Q. Duan, H. L. Bao, J. Li et al., In-situ high energy resolution X-ray absorption spectroscopy for UO2 oxidation at SSRF. Nucl. Sci. Tech. 28, 2 (2017). doi: 10.1007/s41365-016-0155-xhttp://doi.org/10.1007/s41365-016-0155-x
G. F. Knoll, Radiation Detection and Measurement. John Wiley & Sons. (2010). https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480
Y. P. Liu, L. Yao, B. J. Wang et al., Silicon PIN photodiode applied to acquire high-frequency sampling XAFS spectra. Nucl. Sci. Tech. 33, 91 (2022). doi: 10.1007/s41365-022-01066-2http://doi.org/10.1007/s41365-022-01066-2
E. A. Stern, K. Kim. Thickness Effect on the Extended-X-Ray-Absorption-Fine-Structure Amplitude. Phys Rev B. 23, 3781-3787 (1981). doi: 10.1103/PhysRevB.23.3781http://doi.org/10.1103/PhysRevB.23.3781
A. Manceau, M. A. Marcus, N. Tamura, Quantitative speciation of heavy metals in soils and sediments by synchrotron X-Ray techniques. Rev. Mineral. Geochem. 49, 341-428 (2002). doi: 10.2138/gsrmg.49.1.341http://doi.org/10.2138/gsrmg.49.1.341
L. G. Parratt, C. F. Hempstead, E. L. Jossem, “Thickness Effect” in absorption spectra near absorption edges. Phys. Rev. 105, 1228-1232(1957). doi: 10.1103/PhysRev.105.1228http://doi.org/10.1103/PhysRev.105.1228
P. Kahlig, Some aspects of Julius Von Hann's contribution to modern climatology. Interactions Between Global Climate Subsystems: The Legacy of Hann. 75, 1-7 (1993). doi: 10.1029/GM075p0001http://doi.org/10.1029/GM075p0001
J. Chalupský, L. Juha, J. Kuba et al., Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Opt. Express. 15, 6036-6043 (2007). doi: 10.1364/OE.15.006036http://doi.org/10.1364/OE.15.006036
J. Chalupský, J. Krzywinski, L. Juha et al., Spot size characterization of focused non-Gaussian X-Ray laser beams. Opt. Express. 18, 27836-27845 (2010). doi: 10.1364/OE.18.027836http://doi.org/10.1364/OE.18.027836
M. Newville, Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33-74 (2014). doi: 10.2138/rmg.2014.78.2http://doi.org/10.2138/rmg.2014.78.2
B.L. Henke, E.M. Gullikson, J.C. Davis, X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables. 54, 181-342 (1993). doi: 10.1006/adnd.1993.1013http://doi.org/10.1006/adnd.1993.1013
M.D. McCluskey, E.E. Haller, Dopants and Defects in Semiconductors. CRC press (2012). doi: 10.1201/b11819http://doi.org/10.1201/b11819
J. Goulon, G. Ginet, C. C. Robert et al., On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements. J. Phys. 43, 539-548 (1982). doi: 10.1051/jphys:01982004303053900http://doi.org/10.1051/jphys:01982004303053900
N. V. Bausk, S. B. Erenburg, L. N. Mazalov, Correction of XAFS amplitude distortions caused by the thickness effect. J. Synchrotron Radiat. 6, 268-270. (1999). doi: 10.1107/S0909049599001399http://doi.org/10.1107/S0909049599001399
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构