1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
* shij@mail.tsinghua.edu.cn
Scan for full text
引用本文
Design, fabrication, and testing of an X-band 9 MeV standing-wave electron linear accelerator[J]. 核技术(英文版), 2023, 34(7):110
Jian Gao, Hao Zha, Jia-Ru Shi, et al. Design, fabrication, and testing of an X-band 9 MeV standing-wave electron linear accelerator[J]. Nuclear Science and Techniques, 2023, 34(7):110
Design, fabrication, and testing of an X-band 9 MeV standing-wave electron linear accelerator[J]. 核技术(英文版), 2023, 34(7):110 DOI: 10.1007/s41365-023-01254-8.
Jian Gao, Hao Zha, Jia-Ru Shi, et al. Design, fabrication, and testing of an X-band 9 MeV standing-wave electron linear accelerator[J]. Nuclear Science and Techniques, 2023, 34(7):110 DOI: 10.1007/s41365-023-01254-8.
In this study, an X-band standing-wave biperiodic linear accelerator was developed for medical radiotherapy that can accelerate electrons to 9 MeV using a 2.4 MW klystron. The structure works at π/2 mode and adopts magnetic coupling between cavities, generating the appropriate adjacent mode separation of 10 MHz. The accelerator is less than 600 mm long and constitutes 4 bunching cells and 29 normal cells. Geometry optimizations, full-scale radiofrequency (RF) simulations, and beam dynamics calculations were performed. The accelerator was fabricated and examined using a low-power RF test. The cold test results showed a good agreement with the simulation and actual measurement results. In the high-power RF test, the output beam current, energy spectrum, capture ratio, and spot size at the accelerator exit were measured. With the input power of 2.4 MW, the pulse current was 100 mA and the output spot root-mean-square radius was approximately 0.5 mm. The output kinetic energy was 9.04 MeV with the spectral FWHM of 3.5%, demonstrating the good performance of this accelerator.
Standing-wave accelerating structureRF analysisThermal DC gunLow-power RF testHigh-power experiment
C.X. Tang, Present status of the accelerator industry in Asia, in Proceedings of the 1st International Particle Accelerator Conference, Kyoto, Japan (2010)
E. Tanabe, A. Associates, Medical application of C-band accelerator technologies, in Proceedings of the 19th International Linear Accelerator Conference, Chicago, USA (1998)
C.X. Tang, H.B. Chen, Y. Liu et al., Low-energy linacs and their applications in Tsinghua university, in Proceedings of the 23rd International Linear Accelerator Conference, Knoxville, USA (2006)
Y. Kamino, S. Miura, M. Kokubo et al., Development of a new concept automatic frequency controller for an ultra-small C-band linear accelerator guide. Med. Phys. 34, 1797 (2007). doi: 10.1118/1.2752581http://doi.org/10.1118/1.2752581
X.C. Lin, H. Zha, J.R. Shi et al., Fabrication, tuning, and high-gradient testing of an X-band traveling-wave accelerating structure for VIGAS. Nucl. Sci. Tech. 33, 102 (2022). doi: 10.1007/s41365-022-01086-yhttp://doi.org/10.1007/s41365-022-01086-y
J.H. Shao, H.B. Chen, Q.Z. Xing, Design of a C-band 6 MeV standing-wave linear accelerator structure, in Proceedings of the 2nd International Particle Accelerator Conference, San Sebastian, Spain (2011)
J.H. Shao, H. Zha, H.B. Chen, Fabrication and high power RF test of a C-band 6 MeV standing-wave linear accelerating structure, in Proceedings of the 3rd International Particle Accelerator Conference, New Orleans, LA, USA (2012)
J.H. Shao, H. Zha, H.B. Chen et al., High power test of a C-band 6 MeV standing-wave linear accelerator, in Proceedings of the 4th International Particle Accelerator Conference, Shanghai, China (2013)
J.H. Shao, Y.C. Du, H. Zha et al., Development of a C-band 6 MeV standing-wave linear accelerator, Phys. Rev. Accel. Beams. 16, 090102 (2013). doi: 10.1103/PhysRevSTAB.16.090102http://doi.org/10.1103/PhysRevSTAB.16.090102
C.M. Ma, S.B. Jiang, Monte Carlo modelling of electron beams from medical accelerators. Phys. Med. Biol. 44, 157 (1999). doi: 10.1088/0031-9155/44/12/201http://doi.org/10.1088/0031-9155/44/12/201
https://www.cst.comhttps://www.cst.com
https://www.desy.de/~mpyflo/https://www.desy.de/~mpyflo/
J. Shi, Dissertation, Tsinghua University, 2009
T. P. Wangler, RF Linear accelerators, John Wiley & Sons, 2008
X.C. Lin, H. Zha, J.R. Shi et al., Development of a 7-cell S-band standing-wave RF-deflecting cavity for Tsinghua Thomson scattering X-ray source. Nucl. Sci. Tech. 32, 36 (2021). doi: 10.1007/s41365-021-00871-5http://doi.org/10.1007/s41365-021-00871-5
X.C. Lin, H. Zha, J.R. Shi et al., Design, fabrication, and testing of low-group-velocity S-band traveling-wave accelerating structure. Nucl. Sci. Tech. 33, 147 (2022). doi: 10.1007/s41365-022-01124-9http://doi.org/10.1007/s41365-022-01124-9
Shi J, A Grudiev, A Olyunin et al. Tuning of CLIC accelerating structure prototypes at CERN, in Proceedings of the 28rd International Linear Accelerator Conference, Tsukuba, Japan (2010)
J. Shi, A. Grudiev, W. Wuensch, Tuning of X-band traveling-wave accelerating structures. Nucl. Instrum. Meth. A. 704, 14 (2013). doi: 10.1016/j.nima.2012.11.182http://doi.org/10.1016/j.nima.2012.11.182
M.M. Peng, J.R. Shi, H. Zha et al., Development and high-gradient test of a two-half accelerator structure. Nucl. Sci. Tech. 32, 60 (2021). doi: 10.1007/s41365-021-00895-xhttp://doi.org/10.1007/s41365-021-00895-x..
V. Dolgashev, Study of basic breakdown phenomena in high gradient vacuum structures. in Proceedings of Linear Accelerator Conference, LINAC2010, Tsukuba, Japan (2010)
V. Dolgashev, S. Tantawi, Y. Higashi et al., Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures, Appl. Phys. Lett. 97, 171501 (2010). doi: 10.1063/1.3505339http://doi.org/10.1063/1.3505339
A. Grudiev, W. Wuensch, S. Calatroni, New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. Spec. Top-Ac. 12, 102001 (2009). doi: 10.1103/PhysRevSTAB.12.102001http://doi.org/10.1103/PhysRevSTAB.12.102001
A. Degiovanni, W. Wuensch, G.N. Jorge, Comparison of the conditioning of High Gradient Accelerating Structures. Phys. Rev. Accel. Beams. 19, 032001 (2016). doi: 10.1103/PhysRevAccelBeams.19.032001http://doi.org/10.1103/PhysRevAccelBeams.19.032001
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构