1.University of Shanghai for Science and Technology, Shanghai 200093, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.Laboratory for Ultrafast Transient Facility, Chongqing University, Chongqing 401331, China
4.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
* tanjh@sari.ac.cn
Scan for full text
引用本文
Study on crab-cavity-based longitudinal injection scheme and prototype realization of C-band crab cavity for electron storage rings[J]. 核技术(英文版), 2023, 34(7):102
Guan-Hua Wang, Bo-Cheng Jiang, Jian-Hao Tan, et al. Study on crab-cavity-based longitudinal injection scheme and prototype realization of C-band crab cavity for electron storage rings[J]. Nuclear Science and Techniques, 2023, 34(7):102
Study on crab-cavity-based longitudinal injection scheme and prototype realization of C-band crab cavity for electron storage rings[J]. 核技术(英文版), 2023, 34(7):102 DOI: 10.1007/s41365-023-01257-5.
Guan-Hua Wang, Bo-Cheng Jiang, Jian-Hao Tan, et al. Study on crab-cavity-based longitudinal injection scheme and prototype realization of C-band crab cavity for electron storage rings[J]. Nuclear Science and Techniques, 2023, 34(7):102 DOI: 10.1007/s41365-023-01257-5.
A diffraction-limited storage ring with a multi-bend achromat lattice suffers from a small dynamic aperture for conventional off-axis injection. Thus, a longitudinal on-axis injection scheme based on a new type of crab cavity is proposed in this paper. Particle tracking simulations were performed to study the disturbance of the stored beam and the motion of the injected beam during the injection process. The possibility of multi-bunch injections was discussed. In addition, the effect of the long-range wake field induced by the stored beam was analyzed. A C-band standing-wave crab cavity was designed and produced as requested, and its field distribution was measured. The corresponding results are consistent with the simulation results.
On-axis injectionCrab cavityBump orbitWakefield
Y. Zhao, Y. Jiao, S. Wang, Design study of APS-U-Type hybrid-MBA lattice for mid-energy DLSR. Nucl. Sci. Tech. 32, 71 (2021). doi: 10.1007/s41365-021-00902-1http://doi.org/10.1007/s41365-021-00902-1
P.H. Yang, W. Li, Z.L. Ren et al., Design of a diffraction-limited storage ring lattice using longitudinal gradient bends and reverse bends. Nucl. Instrum. Meth A. 990, 164968 (2021). doi: 10.1016/j.nima.2020.164968http://doi.org/10.1016/j.nima.2020.164968
S. C. Leemann, A. Andersson, M. Eriksson et al., Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV. Phys. Rev. Accel. Beams. 12, 120701 (2009). doi: 10.1103/PhysRevSTAB.12.120701http://doi.org/10.1103/PhysRevSTAB.12.120701
Y. Cai, K. Bane, R. Hettel et al., Ultimate storage ring based on fourth-order geometric achromats. Phys. Rev. Accel. Beams. 15, 054002 (2012). doi: 10.1103/PhysRevSTAB.15.054002http://doi.org/10.1103/PhysRevSTAB.15.054002
B.C. Jiang, Z.T. Zhao, S.Q. Tian et al., Using a double-frequency RF system to facilitate on-axis beam accumulation in a storage ring. Nucl. Instrum. Meth A. 814, 1-5 (2016). doi: 10.1016/j.nima.2016.01.024http://doi.org/10.1016/j.nima.2016.01.024
P. Raimondi, N. Carmignani, L. R. Carver et al., Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility. Phys. Rev. Accel. Beams. 24,110701(2021). doi: 10.1103/PhysRevAccelBeams.24.110701http://doi.org/10.1103/PhysRevAccelBeams.24.110701
Spring-8-II conceptual design report, http://rsc.riken.jp/eng/index.htmlhttp://rsc.riken.jp/eng/index.html.
J. Bengtsson and A. Streun, Report No. SLS2-BJ84-001, 2017.
C. Steier, A. Anders, S. De Santis et al., On-Axis Swap-Out Injection R+D for ALS-U, in Proc. IPAC’17, Copenhagen, Denmark, May 2017, pp. 2821-2823. doi: 10.18429/JACoW-IPAC2017-WEPAB103http://doi.org/10.18429/JACoW-IPAC2017-WEPAB103
S. C. Leemann, Pulsed sextupole injection for Sweden's new light source MAX IV. Phys. Rev. Accel. Beams. 15, 050705 (2012). doi: 10.1103/PhysRevSTAB.15.050705http://doi.org/10.1103/PhysRevSTAB.15.050705
M. Aiba, M. Böge, F. Marcellini et al., Longitudinal injection scheme using short pulse kicker for small aperture electron storage 4rings. Phys. Rev. Accel. Beams. 18, 020701 (2015). doi: 10.1103/PhysRevSTAB.18.020701http://doi.org/10.1103/PhysRevSTAB.18.020701
G. Xu, J. H. Chen, Z. Duan et al., On-axis Beam Accumulation Enabled by Phase Adjustment of a Double-frequency RF System for Diffraction-limited Storage Rings, in Proc. IPAC’16, Busan, Korea, May 8-13 2016 pp. 2032-2035. doi: 10.18429/JACoW-IPAC2016-WEOAA02http://doi.org/10.18429/JACoW-IPAC2016-WEOAA02
S. C. Jiang, G. Xu, On-axis injection scheme based on a triple-frequency rf system for diffraction-limited storage rings. Phys. Rev. Accel. Beams. 21, 110701 (2018). doi: 10.1103/PhysRevAccelBeams.21.110701http://doi.org/10.1103/PhysRevAccelBeams.21.110701
W.H. Liu, Y. Jiao, Y. Zhao et al., Multi-objective optimization of longitudinal injection based on a multi-frequency RF system for fourth-generation storage ring-based light sources. Nucl. Instrum. Meth A. 1046, 167712 (2023) doi: 10.1016/j.nima.2022.167712http://doi.org/10.1016/j.nima.2022.167712
Advanced photon source upgrade project, Final design report, Argonne National Laboratory Technical Report No. APSU-2.01-RPT-003, 2019.
Y. Jiao, G. Xu, X.H. Cui et al., The HEPS project. J. Synchrotron Rad. 25, 1611 (2018). doi: 10.1107/S1600577518012110http://doi.org/10.1107/S1600577518012110
P. Alexandre, R.B. Fekih, A. Letrésor et al., Transparent top-up injection into a fourth-generation storage ring. Nucl. Instrum. Meth A. 986, 164739 (2021). doi: 10.1016/j.nima.2020.164739http://doi.org/10.1016/j.nima.2020.164739
J. Kim, G. Jang, M. Yoon et al., Injection scheme with deflecting cavity for a fourth-generation storage ring. Phys. Rev. Accel. Beams. 22, 011601 (2019). doi: 10.1103/PhysRevAccelBeams.22.011601http://doi.org/10.1103/PhysRevAccelBeams.22.011601
J.H. Tan, Q. Gu, W.C. Fang et. al. X-band deflecting cavity design for ultra-short bunch length measurement of SXFEL at SINAP, Nucl. Sci. Tech. 25, 060101 (2014). doi: 10.13538/j.1001-8042/nst.25.060101http://doi.org/10.13538/j.1001-8042/nst.25.060101
W.K.H. Panofsky, W.A. Wenzel, Some considerations concerning the transverse deflection of charged particles in radio-frequency fields. Rev. Sci. Instrum. 27, 967 (1956). doi: 10.1063/1.1715427http://doi.org/10.1063/1.1715427
Accelerator Toolbox version 2.0. https://github.com/atcollab/athttps://github.com/atcollab/at
Z.P. Liu, Introduction to the physics of synchrotron radiation light sources (Hefei, 2009)
J.H. Tan, W.C. Fang, D.C. Tong et al., Design, RF measurement, tuning and high-power test of an X-band deflector for Soft X-ray Free Electron Lasers (SXFEL) at SINAP. Nucl. Instrum. Meth A. 930, 210-219 (2019). doi: 10.1016/j.nima.2019.03.093http://doi.org/10.1016/j.nima.2019.03.093
D. Tong, A new type of perturbing object for high order mode measurements in resonant cavities. DESY M-87-06 (1987)
L. Xiao, Y. Liang, D. Tong et al., Measurements of higher order modes in a 30 cm long X-band structure. Nucl. Instrum. Meth. A. 463, 86-93 (2001). doi: 10.1016/S0168-9002(01)00468-5http://doi.org/10.1016/S0168-9002(01)00468-5
J.C. Amato and H. Herrmann, Improved method for measuring the electric field in microwave cavity resonators. Rev. Sci. Instrum. 56, 696 (1985). doi: 10.1063/1.1138208http://doi.org/10.1063/1.1138208
J.H. Tan, D.C. Tong, Q. Gu et al. Development of a nonresonant perturbation technique and its application to multicell traveling-wave deflectors. Nucl. Instrum. Meth A. 835, 148-156 (2016). doi: 10.1016/j.nima.2016.08.039http://doi.org/10.1016/j.nima.2016.08.039
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构