1.School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
2.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
3.State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi’an 710024, China
* yliu@ncepu.edu.cn
Scan for full text
First-order primal-dual algorithm for sparse-view neutron computed tomography-based three-dimensional image reconstruction[J]. 核技术(英文版), 2023,34(8):118
Yang Liu, Teng-Fei Zhu, Zhi Luo, et al. First-order primal-dual algorithm for sparse-view neutron computed tomography-based three-dimensional image reconstruction[J]. Nuclear Science and Techniques, 2023,34(8):118
First-order primal-dual algorithm for sparse-view neutron computed tomography-based three-dimensional image reconstruction[J]. 核技术(英文版), 2023,34(8):118 DOI: 10.1007/s41365-023-01258-4.
Yang Liu, Teng-Fei Zhu, Zhi Luo, et al. First-order primal-dual algorithm for sparse-view neutron computed tomography-based three-dimensional image reconstruction[J]. Nuclear Science and Techniques, 2023,34(8):118 DOI: 10.1007/s41365-023-01258-4.
Neutron computed tomography (NCT) is widely used as a noninvasive measurement technique in nuclear engineering, thermal hydraulics, and cultural heritage. The neutron source intensity of NCT is usually low and the scan time is long, resulting in a projection image containing severe noise. To reduce the scanning time and increase the image reconstruction quality, an effective reconstruction algorithm must be selected. In CT image reconstruction, the reconstruction algorithms used can be divided into three categories: analytical algorithms, iterative algorithms, and deep learning. Because the analytical algorithm requires complete projection data, it is not suitable for reconstruction in harsh environments, such as strong radiation, high temperature, and high pressure. Deep learning requires large amounts of data and complex models, which cannot be easily deployed, as well as has a high computational complexity and poor interpretability. Therefore, this paper proposes the OS-SART-PDTV iterative algorithm, which uses the ordered subset simultaneous algebraic reconstruction technique (OS-SART) algorithm to reconstruct the image and the first-order primal-dual algorithm to solve the total variation (PDTV), for sparse-view NCT three-dimensional reconstruction. The novel algorithm was compared with other algorithms (FBP, OS-SART-TV, OS-SART-AwTV, and OS-SART-FGPTV) by simulating the experimental data and actual neutron projection experiments. The reconstruction results demonstrate that the proposed algorithm outperforms the FBP, OS-SART-TV, OS-SART-AwTV, and OS-SART-FGPTV algorithms in terms of preserving edge structure, denoising, and suppressing artifacts.
NCTFirst-order primal-dual algorithmOS-SARTTotal variationSparse-view
F. Tian, C R. Geng, X B. Tang et al., Analysis of influencing factors on the method for determining boron concentration and dose through dual prompt gamma detection. Nucl. Sci. Tech. 32(4), 35 (2021). doi: 10.1007/s41365-021-00873-3http://doi.org/10.1007/s41365-021-00873-3
S C Huang, H Zhang, K Bai et al., Monte Carlo study of the neutron ambient dose equivalent at the heavy ion medical machine in Wuwei. Nucl. Sci. Tech. 33(9) 119 (2022). doi: 10.1007/s41365-022-01093-zhttp://doi.org/10.1007/s41365-022-01093-z
Z.W. Lü, G.X. Wei, H.Q. Wang, et al., New flexible CsPbBr3-based scintillator for X-ray tomography. Nucl. Sci. Tech. 33(8), 98 (2022). doi: 10.1007/s41365-022-01085-zhttp://doi.org/10.1007/s41365-022-01085-z
S.Y. Luo, Y.H. Huang, X.T. Ji et al., Hybrid model for muon tomography and quantitative analysis of image quality. Nucl. Scie. Tech. 33(7), 81(2022).doi: 10.1007/s41365-022-01070-6http://doi.org/10.1007/s41365-022-01070-6
L. Steinbock, Transmission tomography of nuclear fuel pins and bundles with an electronic line camera system. J. Nucl. Mater. 178(2-3), 277-283 (2008). doi: 10.1016/j.advwatres.2008.01.022http://doi.org/10.1016/j.advwatres.2008.01.022
H. Umekawa, S. Furui, M. Ozawa et al., Application of CT‐processing to neutron radiography imaging of a fluidized‐bed. Part. Part. Syst. Char. 23(3-4), 272-278 (2006). doi: 10.1002/ppsc.200601066http://doi.org/10.1002/ppsc.200601066
L.Y. Liu, X.P. Ouyang. R.L. Gao et al., Latest developments in room-temperature semiconductor neutron detectors: Prospects and challenges. Sci. China Phys. Mech. Astron. 66, 232001 (2023). doi: 10.1007/s11433-022-2021-6http://doi.org/10.1007/s11433-022-2021-6
P. Andersson, E. Andersson-Sunden, H. Sjöstrand et al., Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator. Rev. Sci. Instrum. 85(8), 085109 (2014). doi: 10.1063/1.4890662http://doi.org/10.1063/1.4890662
N. Takenaka, H. Asano, T. Fujii et al., Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle. Nucl. Instrum. Meth. Phys. Res. Sect. A 424(1), 73-76 (1999). doi: 10.1016/S0168-9002(98)01322-9http://doi.org/10.1016/S0168-9002(98)01322-9
M. Kureta, H. Tamai, H. Yoshida et al., Development of design technology on thermal-hydraulic performance in tight-lattice rod bundles: V-estimation of void fraction. J. Power Energy Syst. 2(1), 271-282 (2008). doi: 10.1016/S0168-9002(98)01322-9http://doi.org/10.1016/S0168-9002(98)01322-9
A.S. Tremsin, S.C. Vogel, M. Mocko et al., Feller, Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography. J. Nucl. Materia 440(1-3), 633-646 (2013).doi: 10.1016/j.jnucmat.2013.06.007http://doi.org/10.1016/j.jnucmat.2013.06.007
P. Andersson, T. Bjelkenstedt, E.A. Sundén et al., Neutron tomography using mobile neutron generators for assessment of void distributions in thermal hydraulic test loops. Phys. Proc. 69, 202-209 (2015).doi: 10.1016/j.phpro.2015.07.029http://doi.org/10.1016/j.phpro.2015.07.029
W. Wu, X. Guo, Y. Chen et al., Deep embedding-attention-refinement for sparse-view CT reconstruction. IEEE T. Instrum. Measurement 7, 1-11(2023). doi: 10.1109/TIM.2022.3221136http://doi.org/10.1109/TIM.2022.3221136
W. Zhang, Z. Zhou, Z.F. Gao et al., Multiple adversarial learning based angiography reconstruction for ultra-low-dose contrast medium CT. IEEE J. Biomed Health Informatics 27(1), 409-420 (2023). doi: 10.1109/JBHI.2022.3213595http://doi.org/10.1109/JBHI.2022.3213595
R. Gordon, R. Bender, G.T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471-481 (1970). doi: 10.1016/0022-5193(70)90109-8http://doi.org/10.1016/0022-5193(70)90109-8
P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105-117(1972). doi: 10.1016/0022-5193(72)90180-4http://doi.org/10.1016/0022-5193(72)90180-4
A.H. Andersen, A.C. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic Imaging 6(1),81-94(1984). doi: 10.1016/0161-7346(84)90008-7http://doi.org/10.1016/0161-7346(84)90008-7
E. J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE T. Information Theory 52(2), 489-509(2006). doi: 10.1109/TIT.2005.862083http://doi.org/10.1109/TIT.2005.862083
L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259-268 (1992). doi: 10.1016/0167-2789(92)90242-Fhttp://doi.org/10.1016/0167-2789(92)90242-F
A. Cai, L. Wang, H. Zhang et al., Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization. J. X-ray Sci. Technol. 22(3), 335-349 (2014). doi: 10.3233/XST-140429http://doi.org/10.3233/XST-140429
Y. Guo, L. Zeng, J. Wang et al., Image reconstruction method for exterior circular cone-beam CT based on weighted directional total variation in cylindrical coordinates. J. Inverse Ill-pose P. 28(2), 155-172 (2020). doi: 10.1515/jiip-2019-0012http://doi.org/10.1515/jiip-2019-0012
Y. Wang, Z. Qi, A new adaptive-weighted total variation sparse-view computed tomography image reconstruction with local improved gradient information. J. X-ray Sci. Technol. 26(6), 957-975(2018). doi: 10.3233/XST-180412http://doi.org/10.3233/XST-180412
H.L. Qi, Z.J. Chen, L.H. Zhou, CT image reconstruction from sparse projections using adaptive TpV regularization. Computational and Mathematical Methods in Medicine 2015, 354869 (2015)
D. Zeng, J. Huang, Z. Bian, et al., A simple low-dose x-ray CT simulation from high-dose scan. IEEE T. Nucl. Sci. 62(5), 2226-2233 (2015). https://pubmed.ncbi.nlm.nih.gov/26543245/https://pubmed.ncbi.nlm.nih.gov/26543245/
H. Jiang, Computed tomography: principles, design, artifacts, and recent advances. Bellingham, Washington USA (Published by SPIE and John Wiley & Sons, Inc.): SPIE. (2009). doi: 10.1117/3.817303http://doi.org/10.1117/3.817303
P. Blomgren, T.F. Chan, Color TV: total variation methods for restoration of vector-valued images. IEEE T. Image Processing 7(3), 304-309(1998). doi: 10.1109/83.661180http://doi.org/10.1109/83.661180
R. T. Rockafellar, Convex analysis. Princeton university press, (1970).
B. Hunt, O. Kubler, Karhunen-Loeve multispectral image restoration, part I: Theory. IEEE T. Acoustics Speech and Signal Processing, 32(3), 592-600(1984).doi: 10.1109/TASSP.1984.1164363http://doi.org/10.1109/TASSP.1984.1164363
E. Esser, X. Zhang, T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sciences 3(4), 1015-1046(2010). doi: 10.1137/09076934Xhttp://doi.org/10.1137/09076934X
B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sciences 5(1), 119-149 (2012). doi: 10.1137/100814494http://doi.org/10.1137/100814494
S. N. Wang, Y. Xu, X.L. Huang, Convex optimization, Beijing TsinghHa University Press (2013).
A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145(2011). doi: 10.1007/s10851-010-0251-1http://doi.org/10.1007/s10851-010-0251-1
W. Wu, D. Hu, K. An et al., A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging. IEEE T. Instrument. Measurement 70, 1-14 (2021). doi: 10.1109/TIM.2020.3026804http://doi.org/10.1109/TIM.2020.3026804
A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE T. Image Processing 18(11), 2419-2434(2009). doi: 10.1109/TIP.2009.2028250http://doi.org/10.1109/TIP.2009.2028250
B. Schillinger, A. E. Craft, A freeware path to neutron computed tomography. Physics Procedia 88, 348-353(2017). doi: 10.1016/j.phpro.2017.06.047http://doi.org/10.1016/j.phpro.2017.06.047
W. Wu, D. Hu, C. Niu et al., DRONE: Dual-domain residual-based optimization network for sparse-view CT reconstruction. IEEE T. Medical Imaging 40(11), 3002-3014(2021). doi: 10.1109/TMI.2021.3078067http://doi.org/10.1109/TMI.2021.3078067
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构