1.School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518000, China
4.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
* yangguo@sinap.ac.cn
hanxingbo@sinap.ac.cn (X. Han),
hexiujie@mail.sysu.edu.cn (X. He)
Scan for full text
引用本文
Influence of element substitutions on poisoning behavior of ZrV2 alloy: theoretical and experimental investigations[J]. 核技术(英文版), 2023, 34(7):113
Shuang Yang, Run-Jie Fang, Guo Yang, et al. Influence of element substitutions on poisoning behavior of ZrV2 alloy: theoretical and experimental investigations[J]. Nuclear Science and Techniques, 2023, 34(7):113
Influence of element substitutions on poisoning behavior of ZrV2 alloy: theoretical and experimental investigations[J]. 核技术(英文版), 2023, 34(7):113 DOI: 10.1007/s41365-023-01259-3.
Shuang Yang, Run-Jie Fang, Guo Yang, et al. Influence of element substitutions on poisoning behavior of ZrV2 alloy: theoretical and experimental investigations[J]. Nuclear Science and Techniques, 2023, 34(7):113 DOI: 10.1007/s41365-023-01259-3.
A ZrV,2, alloy is typically susceptible to poisoning by impurity gases, which causes a considerable reduction in the hydrogen-storage properties of the alloy. In this study, the adsorption characteristics of oxygen on ZrV,2, surfaces doped with Hf, Ti, and Pd are investigated, and the effect of oxygen on the hydrogen storage performance of the alloy was discussed. Subsequently, the adsorption energy, bond-length change, density of states, and differential charge density of the alloy before and after doping are analyzed using the first-principles method. The theoretical results show that Ti doping has a limited effect on the adsorption of oxygen atoms on the ZrV,2, surface, whereas Hf doping decreases the adsorption energy of oxygen on the ZrV,2, surface. Oxygen atoms are more difficult to adsorb at most adsorption sites on Pd-substituting surfaces, which indicates that Pd has the best anti-poisoning properties, followed by Hf. The analysis of the differential charge density and partial density of states show that the electron interaction between the oxygen atom and surface atom of the alloys is weakened, and the total energy is reduced after Hf and Pd doping. Based on theoretical calculations, the hydrogen-absorption kinetics of ZrV,2, Zr,0.9,Hf,0.1,V,2, and Zr(V,0.9,Pd,0.1,),2, alloys are studied in a hydrogen–oxygen mixture of 0.5 vol% O,2, at 25℃. The experimental results show that the hydrogen-storage capacities of ZrV,2, Zr,0.9,Hf,0.1,V,2, and Zr(V,0.9,Pd,0.1,),2, decrease to 19%, 69%, and 80% of their original values, respectively. The order of alloy resistance to 0.5 vol% O,2, poisoning is Zr(V,0.9,Pd,0.1,),2,>,Zr,0.9,Hf,0.1,V,2,>,ZrV,2,. Pd retains its original hydrogen absorption performance to a greater extent than undoped surfaces, and it has the strongest resistance to poisoning, which is consistent with previous theoretical calculations.
Hydrogen storageZrV2First-principlesPoisoning effect
S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science. 329, 1330-1333 (2010). doi: 10.1126/science.1188566http://doi.org/10.1126/science.1188566
G. Principi, F. Agresti, A. Maddalena et al., The problem of solid state hydrogen storage. Energy. 34, 2087-2091 (2009). doi: 10.1016/j.energy.2008.08.027http://doi.org/10.1016/j.energy.2008.08.027
W. Zhang, Y. Hu, L. Ma et al., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 5, 700275 (2017). doi: 10.1002/advs.201700275http://doi.org/10.1002/advs.201700275
X.Y. Jiang, H.J. Lu, Y.S. Chen et al., Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for thorium-based molten salt reactor. Nucl. Sci. Tech. 31, 16 (2020). doi: 10.1007/s41365-020-0729-5http://doi.org/10.1007/s41365-020-0729-5
D. Carpenter, M. Ames, G. Zheng et al., Tritium Production and Partitioning from the Irradiation of Lithium-Beryllium Fluoride Salt. Fusion Sci. Technol. 71, 549-554 (2017). doi: 10.1080/15361055.2017.1291040http://doi.org/10.1080/15361055.2017.1291040
E. Tsitrone, B. Pégourié, Y. Marandet et al., Multi machine scaling of fuel retention in 4 carbon dominated tokamaks. J. Nucl. Mater. 415, S735-S739 (2011). doi: 10.1016/j.jnucmat.2011.01.132http://doi.org/10.1016/j.jnucmat.2011.01.132
T. Tanabe, Tritium fuel cycle in ITER and DEMO: Issues in handling large amount of fuel. J. Nucl. Mater. 438, S19-S26 (2013). doi: 10.1016/j.jnucmat.2013.01.284http://doi.org/10.1016/j.jnucmat.2013.01.284
T.P. Yadav, R.R. Shahi, O.N. Srivastava, Synthesis, characterization and hydrogen storage behaviour of AB2 (ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials. Int. J. Hydrog. Energy. 37, 3689-3696 (2012). doi: 10.1016/j.ijhydene.2011.04.210http://doi.org/10.1016/j.ijhydene.2011.04.210
A. Jain, R.K. Jain, G. Agarwal et al., Crystal structure, hydrogen absorption and thermodynamics of Zr1−xCoxFe2 alloys. J. Alloys Compd. 438, 106-109 (2007). doi: 10.1016/j.jallcom.2006.08.007http://doi.org/10.1016/j.jallcom.2006.08.007
P. Chen, M. Zhu, Recent progress in hydrogen storage. Mater. Today. 11, 36-43 (2008). doi: 10.1016/S1369-7021(08)70251-7http://doi.org/10.1016/S1369-7021(08)70251-7
J. B von Colbe, J.-R. Ares, J. Barale et al., Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrog. Energy. 44, 7780-7808 (2019). doi: 10.1016/j.ijhydene.2019.01.104http://doi.org/10.1016/j.ijhydene.2019.01.104
Y. Zhang, J. Li, T. Zhang et al., Hydrogen storage properties of non-stoichiometric Zr0.9TiV2 melt-spun ribbons. Energy. 114, 1147-1154 (2016). doi: 10.1016/j.energy.2016.08.085http://doi.org/10.1016/j.energy.2016.08.085
S. Kumar, G.P. Tiwari, S. Sonak et al., High performance FeTi – 3.1 mass % V alloy for on board hydrogen storage solution. Energy. 75, 520-524 (2014). doi: 10.1016/j.energy.2014.08.011http://doi.org/10.1016/j.energy.2014.08.011
T. Wu, X. Xue, T. Zhang et al., Role of Ni addition on hydrogen storage characteristics of ZrV2 Laves phase compounds. Int. J. Hydrog. Energy. 41, 10391-10404 (2016). doi: 10.1016/j.ijhydene.2014.10.023http://doi.org/10.1016/j.ijhydene.2014.10.023
D. Shaltiel, I. Jacob, D. Davidov, Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds. J. Common Met. 53, 117-131 (1977). doi: 10.1016/0022-5088(77)90162-Xhttp://doi.org/10.1016/0022-5088(77)90162-X
T.B. Zhang, X.W. Yang, J.S. Li et al., On the poisoning effect of O2 and N2 for the Zr0.9Ti0.1V2 hydrogen storage alloy. J. Power Sources. 202, 217-224 (2012). doi: 10.1016/j.jpowsour.2011.12.002http://doi.org/10.1016/j.jpowsour.2011.12.002
Y. Zhang, J. Li, T. Zhang et al., Hydrogen absorption properties of a non-stoichiometric Zr-based Laves alloy against gaseous impurities. Int. J. Hydrog. Energy. 42, 10109-10116 (2017). doi: 10.1016/j.ijhydene.2017.02.040http://doi.org/10.1016/j.ijhydene.2017.02.040
F. Sun, M. Yan, X. Liu et al., Effect of N2, CH4 and O2 on hydrogen storage performance of 2LiNH2 + MgH2 system. Int. J. Hydrog. Energy. 40, 6173-6179 (2015). doi: 10.1016/j.ijhydene.2015.03.084http://doi.org/10.1016/j.ijhydene.2015.03.084
T. Zhang, Y. Zhang, M. Zhang et al., Hydrogen absorption behavior of Zr-based getter materials with Pd Ag coating against gaseous impurities. Int. J. Hydrog. Energy. 41, 14778-14787 (2016). doi: 10.1016/j.ijhydene.2016.06.073http://doi.org/10.1016/j.ijhydene.2016.06.073
F. Wang, R. Li, C. Ding et al., Effect of catalytic Pd coating on the hydrogen storage performances of ZrCo alloy by electroless plating method. Int. J. Hydrog. Energy. 42, 11510-11522 (2017). doi: 10.1016/j.ijhydene.2017.03.134http://doi.org/10.1016/j.ijhydene.2017.03.134
K. Zhang, S.K. Gade, J.D. Way, Effects of heat treatment in air on hydrogen sorption over Pd–Ag and Pd–Au membrane surfaces. J. Membr. Sci. 403–404, 78-83 (2012). doi: 10.1016/j.memsci.2012.02.025http://doi.org/10.1016/j.memsci.2012.02.025
T. Wu, X. Xue, T. Zhang et al., Poisoning effect of oxygen on hydrogenation performance of a Zr-V-Ni Laves phase alloy. Int. J. Hydrog. Energy. 41, 19114-19122 (2016). doi: 10.1016/j.ijhydene.2016.09.019http://doi.org/10.1016/j.ijhydene.2016.09.019
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). doi: 10.1016/0927-0256(96)00008-0http://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558-561 (1993). doi: 10.1103/PhysRevB.47.558http://doi.org/10.1103/PhysRevB.47.558
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). doi: 10.1103/PhysRevLett.77.3865http://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188-5192 (1976). doi: 10.1103/PhysRevB.13.5188http://doi.org/10.1103/PhysRevB.13.5188
A. Jain, S.P. Ong, G. Hautier et al., Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). doi: 10.1063/1.4812323http://doi.org/10.1063/1.4812323
L. Zhu, J. Wang, C. Dong et al., Understanding the surface adsorption and oxidation of cubic Cr0.5Al0.5N by first-principles calculations. Comput. Mater. Sci. 196, 110518 (2021). doi: 10.1016/j.commatsci.2021.110518http://doi.org/10.1016/j.commatsci.2021.110518
H. Cheng, X. Deng, S. Li et al., Design of PC based high pressure hydrogen absorption/desorption apparatus. Int. J. Hydrog. Energy. 32, 3046-3053 (2007). doi: 10.1016/j.ijhydene.2007.01.010http://doi.org/10.1016/j.ijhydene.2007.01.010
K. Zhang, F. Wang, X. Zeng et al., First-principles investigation on the role of interstitial site preference on the hydrogen-induced disproportionation of ZrCo and its doped alloys. Int. J. Hydrog. Energy 45, 9877-9891 (2020). doi: 10.1016/j.ijhydene.2020.01.183http://doi.org/10.1016/j.ijhydene.2020.01.183
T.B. Zhang, X.F. Wang, R. Hu et al., Hydrogen absorption properties of Zr(V1−xFex)2 intermetallic compounds. Int. J. Hydrog. Energy. 37, 2328-2335 (2012). doi: 10.1016/j.ijhydene.2011.10.089http://doi.org/10.1016/j.ijhydene.2011.10.089
Y.L. Zhang, J.S. Li, T.B. Zhang et al., Microstructure and hydrogen storage properties of non-stoichiometric Zr–Ti–V Laves phase alloys. Int. J. Hydrog. Energy. 38, 14675-14684 (2013). doi: 10.1016/j.ijhydene.2013.09.040http://doi.org/10.1016/j.ijhydene.2013.09.040
M. Zhang, R. Hu, T. Zhang et al., Hydrogenation properties of Pd-coated Zr-based Laves phase compounds. Vacuum. 109, 191-196 (2014). doi: 10.1016/j.vacuum.2014.07.025http://doi.org/10.1016/j.vacuum.2014.07.025
D. Babai, M. Bereznitsky, D. Mogilyanski et al., Hydrogen sorption behavior of some Pd-containing compounds. J. Alloys Compd. 750, 206-212 (2018). doi: 10.1016/j.jallcom.2018.03.312http://doi.org/10.1016/j.jallcom.2018.03.312
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构