1.School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
2.School of Mechatronics Engineering, Guizhou Minzu University, Guiyang 550025, China
3.Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
4.Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin 541004, China
† ttsunphy@zzu.edu.cn
Scan for full text
引用本文
Continuum Skyrme Hartree–Fock–Bogoliubov theory with Green's function method for neutron-rich Ca, Ni, Zr, and Sn isotopes[J]. 核技术(英文版), 2023, 34(7):105
En-Bo Huo, Ke-Ran Li, Xiao-Ying Qu, et al. Continuum Skyrme Hartree–Fock–Bogoliubov theory with Green's function method for neutron-rich Ca, Ni, Zr, and Sn isotopes[J]. Nuclear Science and Techniques, 2023, 34(7):105
Continuum Skyrme Hartree–Fock–Bogoliubov theory with Green's function method for neutron-rich Ca, Ni, Zr, and Sn isotopes[J]. 核技术(英文版), 2023, 34(7):105 DOI: 10.1007/s41365-023-01261-9.
En-Bo Huo, Ke-Ran Li, Xiao-Ying Qu, et al. Continuum Skyrme Hartree–Fock–Bogoliubov theory with Green's function method for neutron-rich Ca, Ni, Zr, and Sn isotopes[J]. Nuclear Science and Techniques, 2023, 34(7):105 DOI: 10.1007/s41365-023-01261-9.
The possible exotic nuclear properties in the neutron-rich Ca, Ni, Zr, and Sn isotopes are examined with the continuum Skyrme Hartree–Fock–Bogoliubov theory in the framework of the Green's function method. The pairing correlation, the couplings with the continuum, and the blocking effects for the unpaired nucleon in odd-,A, nuclei are properly treated. The Skyrme interaction SLy4 is adopted for the ,ph, channel and the density-dependent ,δ, interaction is adopted for the ,pp, channel, which well reproduce the experimental two-neutron separation energies ,S,2n, and one-neutron separation energies ,S,n,. It is found that the criterion ,S,n,>,0 predicts a neutron drip line with neutron numbers much smaller than those for ,S,2,n,>,0. Owing to the unpaired odd neutron, the neutron pairing energies ,-E,pair, in odd-,A, nuclei are much lower than those in the neighboring even-even nuclei. By investigating the single-particle structures, the possible halo structures in the neutron-rich Ca, Ni, and Sn isotopes are predicted, where sharp increases in the root-mean-square (rms) radii with significant deviations from the traditional ,, rule and diffuse spatial density distributions are observed. Analyzing the contributions of various partial waves to the total neutron density ,ρ,lj,(,r,)/,ρ,(,r,) reveals that the orbitals located around the Fermi surface—particularly those with small angular momenta—significantly affect the extended nuclear density and large rms radii. The number of neutrons ,N,λ, (,N,0,) occupying above the Fermi surface ,λ,n, (continuum threshold) is discussed, whose evolution as a function of the mass number ,A, in each isotope is consistent with that of the pairing energy, supporting the key role of the pairing correlation in halo phenomena.
Neutron-rich nucleineutron haloSkyrme Hartree–Fock–Bogoliubov theoryGreen's function method
I. Tanihata, Nuclear structure studies from reaction induced by radioactive nuclear beams. Prog. Part. Nucl. Phys. 35, 505 (1995). doi: 10.1016/0146-6410(95)00046-Lhttp://doi.org/10.1016/0146-6410(95)00046-L
B. Jonson, Light drip line nuclei. Phys. Rep. 389, 1 (2004). doi: 10.1016/j.physrep.2003.07.004http://doi.org/10.1016/j.physrep.2003.07.004
I. Tanihata, H. Savajols, and R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013). doi: 10.1016/j.ppnp.2012.07.001http://doi.org/10.1016/j.ppnp.2012.07.001
T. Nakamura, Neutron halo - recent experimental progress at RIBF. AAPPS Bull. 29, 19 (2019). doi: 10.22661/AAPPSBL.2019.29.5.19http://doi.org/10.22661/AAPPSBL.2019.29.5.19
A.C. Mueller and B.M. Sherrill, Nuclei at the limits of particle stability. Annu. Rev. Nucl. Part. Sci. 43, 529 (1993). doi: 10.1146/annurev.ns.43.120193.002525http://doi.org/10.1146/annurev.ns.43.120193.002525
P. Hansen, Nuclear halos: Structure and reactions. Nucl. Phys. A 588, c1 (1995). doi: 10.1016/0375-9474(95)00091-Ehttp://doi.org/10.1016/0375-9474(95)00091-E
R. Casten and B. Sherrill, The study of exotic nuclei. Prog. Part. Nucl. Phys. 45, S171 (2000). doi: 10.1016/S0146-6410(00)90013-9http://doi.org/10.1016/S0146-6410(00)90013-9
A.S. Jensen, K. Riisager, D.V. Fedorov et al., Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215 (2004). doi: 10.1103/RevModPhys.76.215http://doi.org/10.1103/RevModPhys.76.215
J. Meng, H. Toki, S.-G. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470 (2006). doi: 10.1016/j.ppnp.2005.06.001http://doi.org/10.1016/j.ppnp.2005.06.001
S.N. Ershov, L.V. Grigorenko, J.S. Vaagen et al., Halo formation and breakup: lessons and open questions. J. Phys. G Nucl. Phys. 37, 064026 (2010). doi: 10.1088/0954-3899/37/6/064026http://doi.org/10.1088/0954-3899/37/6/064026
I. Tanihata, H. Hamagaki, O. Hashimoto, et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985). doi: 10.1103/PhysRevLett.55.2676http://doi.org/10.1103/PhysRevLett.55.2676
T. Minamisono, T. Ohtsubo, I. Minami et al., Proton halo of 8B disclosed by its giant quadrupole moment. Phys. Rev. Lett. 69, 2058-2061 (1992). doi: 10.1103/PhysRevLett.69.2058http://doi.org/10.1103/PhysRevLett.69.2058
W. Schwab, H. Geissel, H. Lenske et al., Observation of a proton halo in 8B. Z. Phys. A 350, 283 (1995). doi:https://link.springer.com/content/pdf/10.1007/bf01291183doi:https://link.springer.com/content/pdf/10.1007/bf01291183
J. Meng and P. Ring, Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li. Phys. Rev. Lett. 77, 3963 (1996). doi: 10.1103/PhysRevLett.77.3963http://doi.org/10.1103/PhysRevLett.77.3963
J. Meng and P. Ring, Giant halo at the neutron drip line. Phys. Rev. Lett. 80, 460 (1998). doi: 10.1103/PhysRevLett.80.460http://doi.org/10.1103/PhysRevLett.80.460
S.-G. Zhou, J. Meng, P. Ring et al., Neutron halo in deformed nuclei. Phys. Rev. C 82, 011301 (2010). doi: 10.1103/PhysRevC.82.011301http://doi.org/10.1103/PhysRevC.82.011301
X.-X. Sun and S.-G. Zhou, Rotating deformed halo nuclei and shape decoupling effects. Sci. Bull. 66, 2072 (2021). doi: 10.1016/j.scib.2021.07.005http://doi.org/10.1016/j.scib.2021.07.005
A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N=16, near the neutron drip line. Phys. Rev. Lett. 84, 5493 (2000). doi: 10.1103/PhysRevLett.84.5493http://doi.org/10.1103/PhysRevLett.84.5493
T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Magic numbers in exotic nuclei and spin-isospin properties of the NN Interaction. Phys. Rev. Lett. 87, 082502 (2001).doi: 10.1103/PhysRevLett.87.082502http://doi.org/10.1103/PhysRevLett.87.082502
M. Rejmund, S. Bhattacharyya, A. Navin et al., Shell evolution and the N=34 ”magic number”. Phys. Rev. C 76, 021304 (2007). doi: 10.1103/PhysRevC.76.021304http://doi.org/10.1103/PhysRevC.76.021304
M. Rosenbusch, P. Ascher, D. Atanasov et al., Probing the N=32 shell closure below the magic proton number Z=20: Mass measurements of the exotic isotopes 52,53K. Phys. Rev. Lett. 114, 202501 (2015). doi: 10.1103/PhysRevLett.114.202501http://doi.org/10.1103/PhysRevLett.114.202501
S. Chen, J. Lee, P. Doornenbal, et al., Quasifree neutron knockout from 54Ca corroborates arising N=34 neutron magic number. Phys. Rev. Lett. 123, 142501 (2019). doi: 10.1103/PhysRevLett.123.142501http://doi.org/10.1103/PhysRevLett.123.142501
X.-X. Sun, J. Zhao, and S.-G. Zhou, Shrunk halo and quenched shell gap at N=16 in 22C: Inversion of sd states and deformation effects. Phys. Lett. B 785, 530 (2018). doi: 10.1016/j.physletb.2018.08.071http://doi.org/10.1016/j.physletb.2018.08.071
A. Zilges, M. Babilon, T. Hartmann et al., Collective excitations close to the particle threshold. Prog. Part. Nucl. Phys. 55, 408 (2005). doi: 10.1016/j.ppnp.2005.01.018http://doi.org/10.1016/j.ppnp.2005.01.018
P. Adrich, A. Klimkiewicz, M. Fallot, et al., Evidence for pygmy and giant dipole resonances in 130Sn and 132Sn. Phys. Rev. Lett. 95, 132501 (2005). doi: 10.1103/PhysRevLett.95.132501http://doi.org/10.1103/PhysRevLett.95.132501
M. Arnould, S. Goriely, and K. Takahashi, The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97 (2007). doi: 10.1016/j.physrep.2007.06.002http://doi.org/10.1016/j.physrep.2007.06.002
J.-W. Xia, W.-L. Zhan, B.-W. Wei et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instrum. Meth. A 488, 11 (2002). doi: 10.1016/S0168-9002(02)00475-8http://doi.org/10.1016/S0168-9002(02)00475-8
W.-L. Zhan, H.-S. Xu, G.-Q. Xiao et al., Progress in HIRFL-CSR. Nucl. Phys. A 834, 694c (2010). doi: 10.1016/j.nuclphysa.2010.01.126http://doi.org/10.1016/j.nuclphysa.2010.01.126
C. Sturm, B. Sharkov, and H. Stocker, 1, 2, 3 … FAIR!. Nucl. Phys. A 834, 682c (2010). doi: 10.1016/j.nuclphysa.2010.01.124http://doi.org/10.1016/j.nuclphysa.2010.01.124
S. Gales, SPIRAL2 at GANIL: next generation of ISOL facility for intense secondary radioactive ion beams. Nucl. Phys. A 834, 717c (2010). doi: 10.1016/j.nuclphysa.2010.01.130http://doi.org/10.1016/j.nuclphysa.2010.01.130
T. Motobayashi, RIKEN RI beam factory-recent results and perspectives. Nucl. Phys. A 834, 707c (2010). doi: 10.1016/j.nuclphysa.2010.01.128http://doi.org/10.1016/j.nuclphysa.2010.01.128
M. Thoennessen, Plans for the facility for rare isotope beams. Nucl. Phys. A 834, 688c (2010). doi: 10.1016/j.nuclphysa.2010.01.125http://doi.org/10.1016/j.nuclphysa.2010.01.125
X.H. Zhou, Physics opportunities at the new facility HIAF. Nucl. Phys. Rev. 35, 339 (2018). doi: 10.11804/NuclPhysRev.35.04.339http://doi.org/10.11804/NuclPhysRev.35.04.339
X. Zhou, M. Wang, Y.-H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of 51Co. Nucl. Sci. Tech. 32, 37 (2021). doi: 10.1007/s41365-021-00876-0http://doi.org/10.1007/s41365-021-00876-0
Relativistic Density Functional for Nuclear Structure, edited by J. Meng, International Review of Nuclear Physics Vol. 10, (World Scientific, Singapore, 2016).
X.-B. Wei, H.-L. Wei, Y.-T. Wang et al., Multiple-models predictions for drip line nuclides in projectile fragmentation of 40,48Ca, 58,64Ni, and 78,86Kr at 140 MeV/u. Nucl. Sci. Tech. 33, 155 (2022). doi: 10.1007/s41365-022-01137-4http://doi.org/10.1007/s41365-022-01137-4
Y.-F. Gao, B.-S. Cai, and C.-X. Yuan, Investigation of -decay half-life and delayed neutron emission with uncertainty analysis. Nucl. Sci. Tech. 34, 9 (2023). doi: 10.1007/s41365-022-01153-4http://doi.org/10.1007/s41365-022-01153-4
J. Dobaczewski, W. Nazarewicz, T. R. Werner et al., Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53, 2809 (1996). doi: 10.1103/PhysRevC.53.2809http://doi.org/10.1103/PhysRevC.53.2809
J. Meng, Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl. Phys. A 635, 3 (1998). doi: 10.1016/S0375-9474(98)00178-Xhttp://doi.org/10.1016/S0375-9474(98)00178-X
M. Grasso, N. Sandulescu, N. Van Giai et al., Pairing and continuum effects in nuclei close to the drip line. Phys. Rev. C 64, 064321 (2001). doi: 10.1103/PhysRevC.64.064321http://doi.org/10.1103/PhysRevC.64.064321
N. Sandulescu, L.S. Geng, H. Toki et al., Pairing correlations and resonant states in the relativistic mean field theory. Phys. Rev. C 68, 054323 (2003). doi: 10.1103/PhysRevC.68.054323http://doi.org/10.1103/PhysRevC.68.054323
L.-G. Cao, and Z.-Y. Ma, Effect of resonant continuum on pairing correlations in the relativistic approach. Eur. Phys. J. A 22, 189 (2004). doi: 10.1140/epja/i2004-10029-5http://doi.org/10.1140/epja/i2004-10029-5
T. Nakamura, N. Kobayashi, Y. Kondo et al., Halo structure of the island of inversion nucleus 31Ne. Phys. Rev. Lett. 103, 262501 (2009). doi: 10.1103/PhysRevLett.103.262501http://doi.org/10.1103/PhysRevLett.103.262501
N. Kobayashi, T. Nakamura, Y. Kondo et al., Observation of a p-wave one-neutron halo configuration in 37Mg. Phys. Rev. Lett. 112, 242501 (2014). doi: 10.1103/PhysRevLett.112.242501http://doi.org/10.1103/PhysRevLett.112.242501
P. Ring and P. Schuck, The nuclear many-body problem (Springer Science & Business Media, 2004).
J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 21, 1568 (1980). doi: 10.1103/PhysRevC.21.1568http://doi.org/10.1103/PhysRevC.21.1568
J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103 (1984). doi: 10.1016/0375-9474(84)90433-0http://doi.org/10.1016/0375-9474(84)90433-0
W.-H. Long, P. Ring, N. V. Giai et al., Relativistic Hartree-Fock-Bogoliubov theory with density dependent meson-nucleon couplings. Phys. Rev. C 81, 024308 (2010). doi: 10.1103/PhysRevC.81.024308http://doi.org/10.1103/PhysRevC.81.024308
L.-L. Li, J. Meng, P. Ring et al., Deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 85, 024312 (2012). doi: 10.1103/PhysRevC.85.024312http://doi.org/10.1103/PhysRevC.85.024312
Y. Chen, L.-L. Li, H.-Z. Liang et al., Density-dependent deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 85, 067301 (2012). doi: 10.1103/PhysRevC.85.067301http://doi.org/10.1103/PhysRevC.85.067301
J.-C. Pei, Y.-N. Zhang, and F.-R. Xu, Evolution of surface deformations of weakly bound nuclei in the continuum. Phys. Rev. C 87, 051302 (2013). doi: 10.1103/PhysRevC.87.051302http://doi.org/10.1103/PhysRevC.87.051302
Y.-N. Zhang, J.-C. Pei, and F.-R. Xu, Hartree-Fock-Bogoliubov descriptions of deformed weakly bound nuclei in large coordinate spaces. Phys. Rev. C 88, 054305 (2013). doi: 10.1103/PhysRevC.88.054305http://doi.org/10.1103/PhysRevC.88.054305
J.C. Pei, G.I. Fann, R.J. Harrison et al., Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure. Phys. Rev. C 90, 024317 (2014). doi: 10.1103/PhysRevC.90.024317http://doi.org/10.1103/PhysRevC.90.024317
Y. Shi, Precision of finite-difference representation in 3D coordinate-space Hartree-Fock-Bogoliubov calculations. Phys. Rev. C 98, 014329 (2018). doi: 10.1103/PhysRevC.98.014329http://doi.org/10.1103/PhysRevC.98.014329
Y. Gambhir, P. Ring, and A. Thimet, Relativistic mean field theory for finite nuclei. Ann. Phys. 198, 132 (1990). doi: 10.1016/0003-4916(90)90330-Qhttp://doi.org/10.1016/0003-4916(90)90330-Q
S.-G. Zhou, J. Meng, and P. Ring, Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys. Rev. C 68, 034323 (2003). doi: 10.1103/PhysRevC.68.034323http://doi.org/10.1103/PhysRevC.68.034323
M. V. Stoitsov, W. Nazarewicz, and S. Pittel, New discrete basis for nuclear structure studies. Phys. Rev. C 58, 2092 (1998). doi: 10.1103/PhysRevC.58.2092http://doi.org/10.1103/PhysRevC.58.2092
M. Stoitsov, J. Dobaczewski, W. Nazarewicz et al., Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO. Comput. Phys. Commun. 167, 43 (2005). doi: 10.1016/j.cpc.2005.01.001http://doi.org/10.1016/j.cpc.2005.01.001
K.-Y. Zhang, M.-K. Cheoun, Y.-B. Choi, et al. (DRHBc collaboration), Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes. Phys. Rev. C 102, 024314 (2020). doi: 10.1103/PhysRevC.102.024314http://doi.org/10.1103/PhysRevC.102.024314
S. Kim, M.-H. Mun, M.-K. Cheoun et al., Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 105, 034340 (2022). doi: 10.1103/PhysRevC.105.034340http://doi.org/10.1103/PhysRevC.105.034340
E. Tamura, Relativistic single-site Green function for general potentials. Phys. Rev. B 45, 3271 (1992). doi: 10.1103/PhysRevB.45.3271http://doi.org/10.1103/PhysRevB.45.3271
D. L. Foulis, Partial-wave Green-function expansions for general potentials. Phys. Rev. A 70, 022706 (2004). doi: 10.1103/PhysRevA.70.022706http://doi.org/10.1103/PhysRevA.70.022706
E.N. Economou, Green's Fucntion in Quantum Physics (Springer-Verlag, Berlin, 2006).
S.T. Belyaev, A.V. Smirnov, S.V. Tolokonnikov et al., Pairing in nuclei in the coordinate representation. Sov. J. Nucl. Phys. 45, 783 (1987).
M. Matsuo, Continuum linear response in coordinate space Hartree–Fock–Bogoliubov formalism for collective excitations in drip-line nuclei. Nucl. Phys. A 696, 371 (2001). doi: 10.1016/S0375-9474(01)01133-2http://doi.org/10.1016/S0375-9474(01)01133-2
M. Matsuo, Collective excitations and pairing effects in drip-line nuclei: continuum RPA in coordinate-space HFB. Prog. Theor. Phys. Suppl. 146, 110 (2002). doi: 10.1143/PTPS.146.110http://doi.org/10.1143/PTPS.146.110
M. Matsuo, K. Mizuyama, and Y. Serizawa, Di-neutron correlation and soft dipole excitation in medium mass neutron-rich nuclei near drip line. Phys. Rev. C 71, 064326 (2005). doi: 10.1103/PhysRevC.71.064326http://doi.org/10.1103/PhysRevC.71.064326
M. Matsuo and Y. Serizawa, Surface-enhanced pair transfer amplitude in quadrupole states of neutron-rich Sn isotopes. Phys. Rev. C 82, 024318 (2010). doi: 10.1103/PhysRevC.82.024318http://doi.org/10.1103/PhysRevC.82.024318
H. Shimoyama and M. Matsuo, Anomalous pairing vibration in neutron-rich Sn isotopes beyond the N=82 magic number. Phys. Rev. C 84, 044317 (2011). doi: 10.1103/PhysRevC.84.044317http://doi.org/10.1103/PhysRevC.84.044317
H. Shimoyama and M. Matsuo, Di-neutron correlation in monopole two-neutron transfer modes in the Sn isotope chain. Phys. Rev. C 88, 054308 (2013). doi: 10.1103/PhysRevC.88.054308http://doi.org/10.1103/PhysRevC.88.054308
M. Matsuo, Continuum quasiparticle random-phase approximation for astrophysical direct neutron capture reactions on neutron-rich nuclei. Phys. Rev. C 91, 034604 (2015). doi: 10.1103/PhysRevC.91.034604http://doi.org/10.1103/PhysRevC.91.034604
H. Oba and M. Matsuo, Continuum Hartree-Fock-Bogoliubov theory for weakly bound deformed nuclei using the coordinate-space Green's function method. Phys. Rev. C 80, 024301 (2009). doi: 10.1103/PhysRevC.80.024301http://doi.org/10.1103/PhysRevC.80.024301
Y. Zhang, M. Matsuo, and J. Meng, Persistent contribution of unbound quasiparticles to the pair correlation in the continuum Skyrme-Hartree-Fock-Bogoliubov approach. Phys. Rev. C 83, 054301 (2011). doi: 10.1103/PhysRevC.83.054301http://doi.org/10.1103/PhysRevC.83.054301
Y. Zhang, M. Matsuo, and J. Meng, Pair correlation of giant halo nuclei in continuum Skyrme-Hartree-Fock-Bogoliubov theory. Phys. Rev. C 86, 054318 (2012). doi: 10.1103/PhysRevC.86.054318http://doi.org/10.1103/PhysRevC.86.054318
X. Qu and Y. Zhang, Effects of mean-field and pairing correlations on the Bogoliubov quasiparticle resonance. Sci. China-Phys. Mech. Astron. 62, 112012 (2019). doi: 10.1007/s11433-019-9409-yhttp://doi.org/10.1007/s11433-019-9409-y
Y. Zhang and X.-Y. Qu, Effects of pairing correlation on the quasiparticle resonance in neutron-rich Ca isotopes. Phys. Rev. C 102, 054312 (2020). doi: 10.1103/PhysRevC.102.054312http://doi.org/10.1103/PhysRevC.102.054312
T.-T. Sun, Z.-X. Liu, L. Qian et al., Continuum Skyrme-Hartree-Fock-Bogoliubov theory with Green's function method for odd-A nuclei. Phys. Rev. C 99, 054316 (2019). doi: 10.1103/PhysRevC.99.054316http://doi.org/10.1103/PhysRevC.99.054316
J. Meng and S.-G. Zhou, Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum. J. Phys. G Nucl. Phys. 42, 093101 (2015). doi: 10.1088/0954-3899/42/9/093101http://doi.org/10.1088/0954-3899/42/9/093101
T.-T. Sun, E. Hiyama, H. Sagawa et al., Mean-field approaches for hypernuclei and current experimental data. Phys. Rev. C 94, 064319 (2016). doi: 10.1103/PhysRevC.94.064319http://doi.org/10.1103/PhysRevC.94.064319
W.-L. Lu, Z.-X. Liu, S.-H. Ren et al., (Pseudo)spin symmetry in the single-neutron spectrum of hypernuclei. J. Phys. G Nucl. Phys. 44, 125104 (2017). doi: 10.1088/1361-6471/aa8e2dhttp://doi.org/10.1088/1361-6471/aa8e2d
T.-T. Sun, W.-L. Lu, and S.-S. Zhang, Spin and pseudospin symmetries in the single- spectrum. Phys. Rev. C 96, 044312 (2017). doi: 10.1103/PhysRevC.96.044312http://doi.org/10.1103/PhysRevC.96.044312
T.-T. Sun, C.-J. Xia, S.-S. Zhang et al., Massive neutron stars and -hypernuclei in relativistic mean field models. Chin. Phys. C 42, 025101 (2018). doi: 10.1088/1674-1137/42/2/025101http://doi.org/10.1088/1674-1137/42/2/025101
Z.-X. Liu, C.-J. Xia, W.-L. Lu et al., Relativistic mean-field approach for , and ∑ hypernuclei. Phys. Rev. C 98, 024316 (2018). doi: 10.1103/PhysRevC.98.024316http://doi.org/10.1103/PhysRevC.98.024316
T.-T. Sun, S.-S. Zhang, Q.-L. Zhang et al., Strangeness and resonance in compact stars with relativistic-mean-field models. Phys. Rev. D 99, 023004 (2019). doi: 10.1103/PhysRevD.99.023004http://doi.org/10.1103/PhysRevD.99.023004
C. Chen, Q.-K. Sun, Y.-X. Li et al., Possible shape coexistence in Ne isotopes and the impurity effect of hyperon. Sci. China-Phys. Mech. Astron. 64, 282011 (2021). doi: 10.1007/s11433-021-1721-1http://doi.org/10.1007/s11433-021-1721-1
Y. Tanimura, H. Sagawa, T.-T. Sun et al., hypernuclei and , and the two-body interaction. Phys. Rev. C 105, 044324 (2022). doi: 10.1103/PhysRevC.105.044324http://doi.org/10.1103/PhysRevC.105.044324
T.-T. Sun, S.-Q. Zhang, Y. Zhang et al., Green's function method for single-particle resonant states in relativistic mean field theory. Phys. Rev. C 90, 054321 (2014). doi: 10.1103/PhysRevC.90.054321http://doi.org/10.1103/PhysRevC.90.054321
T.-T. Sun, W.-L. Lu, L. Qian et al., Green's function method for the spin and pseudospin symmetries in the single-particle resonant states. Phys. Rev. C 99, 034310 (2019). doi: 10.1103/PhysRevC.99.034310http://doi.org/10.1103/PhysRevC.99.034310
T.-T. Sun, Z.-M. Niu, and S.-Q. Zhang, Single-proton resonant states and the isospin dependence investigated by Green's function relativistic mean field theory. J. Phys. G Nucl. Phys. 43, 045107 (2016). doi: 10.1088/0954-3899/43/4/045107http://doi.org/10.1088/0954-3899/43/4/045107
S.-H. Ren, T.-T. Sun, and W. Zhang, Green's function relativistic mean field theory for hypernuclei. Phys. Rev. C 95, 054318 (2017). doi: 10.1103/PhysRevC.95.054318http://doi.org/10.1103/PhysRevC.95.054318
C. Chen, Z. P. Li, Y. X. Li et al., Green's function relativistic mean field theory for hypernuclei. Chin. Phys. C 44, 084105 (2020). doi: 10.1088/1674-1137/44/8/084105http://doi.org/10.1088/1674-1137/44/8/084105
Y.-T. Wang and T.-T. Sun, Searching for single-particle resonances with the Green's function method. Nucl. Sci. Tech. 32, 46 (2021). doi: 10.1007/s41365-021-00884-0http://doi.org/10.1007/s41365-021-00884-0
T.-T. Sun, Green's function method in covariant density functional theory. Sci. Sin.-Phys. Mech. Astron. 46, 12006 (2016). doi: 10.1360/SSPMA2015-00371http://doi.org/10.1360/SSPMA2015-00371
T.-T. Sun, L. Qian, C. Chen et al., Green's function method for the single-particle resonances in a deformed Dirac equation. Phys. Rev.C 101, 014321 (2020). doi: 10.1103/PhysRevC.101.014321http://doi.org/10.1103/PhysRevC.101.014321
J. Carbonell, A. Deltuva, A.C. Fonseca et al., Bound state techniques to solve the multiparticle scattering problem. Prog. Part. Nucl. Phys. 74, 55 (2014). doi: 10.1016/j.ppnp.2013.10.003http://doi.org/10.1016/j.ppnp.2013.10.003
M. Shi, J.-G. Guo, Q. Liu et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. C 92, 054313 (2015). doi: 10.1103/PhysRevLett.55.2676http://doi.org/10.1103/PhysRevLett.55.2676
X.-X. Shi, M. Shi, Z.-M. Niu et al., Probing resonances in deformed nuclei by using the complex-scaled Green's function method. Phys. Rev. C 94, 024302 (2016). doi: 10.1103/PhysRevC.94.024302http://doi.org/10.1103/PhysRevC.94.024302
M. Shi, Z.-M. Niu, and H.-Z. Liang, Combination of complex momentum representation and Green's function methods in relativistic mean-field theory. Phys. Rev. C 97, 064301 (2018). doi: 10.1103/PhysRevC.97.064301http://doi.org/10.1103/PhysRevC.97.064301
M. Wang, W.-J. Huang, F. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references*. Chin. Phys. C 45, 030003 (2021). doi: 10.1088/1674-1137/abddafhttp://doi.org/10.1088/1674-1137/abddaf
E. Chabanat, P. Bonche, P. Haensel et al., A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635, 231 (1998). doi: 10.1016/S0375-9474(98)00180-8http://doi.org/10.1016/S0375-9474(98)00180-8
M. Matsuo, Spatial structure of neutron cooper pair in low density uniform matter. Phys. Rev. C 73, 044309 (2006). doi: 10.1103/PhysRevC.73.044309http://doi.org/10.1103/PhysRevC.73.044309
M. Matsuo, Y. Serizawa, and K. Mizuyama, Pairing collectivity in medium-mass neutron-rich nuclei near drip-line. Nucl. Phys. A 788, 307 (2007). doi: 10.1016/j.nuclphysa.2007.01.017http://doi.org/10.1016/j.nuclphysa.2007.01.017
X.-W. Xia, Y. Lim, P.-W. Zhao et al., The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. At. Data Nucl. Data Tables 121-122, 1 (2018). doi: 10.1016/j.adt.2017.09.001http://doi.org/10.1016/j.adt.2017.09.001
X.-Y. Qu and Y. Zhang, Canonical states in continuum Skyrme Hartree-Fock-Bogoliubov theory with Green's function method. Phys. Rev. C 99, 014314 (2019). doi: 10.1103/PhysRevC.99.014314http://doi.org/10.1103/PhysRevC.99.014314
X.Y. Qu, H. Tong, and S.Q. Zhang, Canonical states in relativistic continuum theory with the Green's function method: Neutrons in continuum of Zirconium giant-halo nuclei. Phys. Rev. C 105, 014326 (2022). doi: 10.1103/PhysRevC.105.014326http://doi.org/10.1103/PhysRevC.105.014326
W. Satuła, J. Dobaczewski, and W. Nazarewicz, Odd-even staggering of nuclear masses: Pairing or shape effect. Phys. Rev. Lett. 81, 3599 (1998). doi: 10.1103/PhysRevLett.81.3599http://doi.org/10.1103/PhysRevLett.81.3599
J. Dobaczewski, P. Magierski, W. Nazarewicz et al., Odd-even staggering of binding energies as a consequence of pairing and mean-field effects. Phys. Rev. C 63, 024308 (2001). doi: 10.1103/PhysRevC.63.024308http://doi.org/10.1103/PhysRevC.63.024308
Y. A. Litvinov, T. J. Bürvenich, H. Geissel et al., Isospin dependence in the odd-even staggering of nuclear binding energies. Phys. Rev. Lett. 95, 042501 (2005). doi: 10.1103/PhysRevLett.95.042501http://doi.org/10.1103/PhysRevLett.95.042501
K. Hagino and H. Sagawa, Pairing correlations and odd-even staggering in reaction cross sections of weakly bound nuclei. Phys. Rev. C 85, 014303 (2012). doi: 10.1103/PhysRevC.85.014303http://doi.org/10.1103/PhysRevC.85.014303
L. J. Wang, B. Y. Sun, J. M. Dong et al., Odd-even staggering of the nuclear binding energy described by covariant density functional theory with calculations for spherical nuclei. Phys. Rev. C 87, 054331 (2013). doi: 10.1103/PhysRevC.87.054331http://doi.org/10.1103/PhysRevC.87.054331
L. Coraggio, A. Covello, A. Gargano et al., Behavior of odd-even mass staggering around 132Sn. Phys. Rev. C 88, 041304 (2013). doi: 10.1103/PhysRevC.88.041304http://doi.org/10.1103/PhysRevC.88.041304
W.J. Chen, C.A. Bertulani, F.R. Xu et al., Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory. Phys. Rev. C 91, 047303 (2015). doi: 10.1103/PhysRevC.91.047303http://doi.org/10.1103/PhysRevC.91.047303
J. Meng and P. Ring, Giant halo at the neutron drip line. Phys. Rev. Lett. 80, 460 (1998). doi: 10.1103/PhysRevLett.80.460http://doi.org/10.1103/PhysRevLett.80.460
M. Grasso, S. Yoshida, N. Sandulescu, and N. Van Giai, Giant neutron halos in the non-relativistic mean field approach. Phys. Rev. C 74, 064317 (2006). doi: 10.1103/PhysRevC.74.064317http://doi.org/10.1103/PhysRevC.74.064317
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构