1.University of Electronic Science and Technology of China, Chengdu 610000, China
2.National Supercomputing Center in Chengdu, Chengdu 610041, China
zhanqio@uestc.edu.cn
Scan for full text
引用本文
Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction[J]. 核技术(英文版), 2023, 34(7):101
Ou-Yi Li, Yang Wang, Qiong Zhang, et al. Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction[J]. Nuclear Science and Techniques, 2023, 34(7):101
Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction[J]. 核技术(英文版), 2023, 34(7):101 DOI: 10.1007/s41365-023-01264-6.
Ou-Yi Li, Yang Wang, Qiong Zhang, et al. Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction[J]. Nuclear Science and Techniques, 2023, 34(7):101 DOI: 10.1007/s41365-023-01264-6.
Accurate 3-Dimensional (3-D) reconstruction technology for non-destructive testing based on digital radiography (DR) is of great importance for alleviating the drawbacks of the existing computed tomography (CT)-based method. The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR. However, for 3-D reconstruction, it is limited by its high time consumption. To solve this problem, this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application. The images are utilized for 3-D reconstruction of the test model. We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes—multithreaded applications (G4-MT) and message-passing interfaces (G4-MPI)—by assessing parallel speedup and efficiency. This study explores the scalability of the hybrid G4-MPI and G4-MT modes. The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth, and the parallel efficiency is maintained at a high level. The hybrid mode has strong scalability, as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted, and the parallel speedup can be up to 151.36. The 3-D reconstruction of the model is achieved based on the filtered back projection (FBP) algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT. The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model. This method is applied to a complex model, and the quality of the reconstructed images is evaluated.
Parallel computingMonte CarloDigital Radiography3-D reconstruction
P.F. Stelt, Better imaging: the advantages of digital radiography. J. Am. Dent. Assoc. 139, S7-S13 (2008). doi: 10.14219/jada.archive.2008.0357http://doi.org/10.14219/jada.archive.2008.0357
J. Kruth, M. Bartscher, S. Carmignato et al., Computed tomography for dimensional metrology. CIRP Annals -Manufacturing Technology, 60(2), 821-842 (2011). doi: 10.1016/j.cirp.2011.05.006http://doi.org/10.1016/j.cirp.2011.05.006
C. Zhang, X. Pan, H. Shang et al., Improvements to conventional x-ray tube-based cone-beam computed tomography system. Nucl. Sci. Tech. 29, 43 (2018). doi: 10.1007/s41365-018-0370-8http://doi.org/10.1007/s41365-018-0370-8
X. Lu, X. Wang, D. Li et al., Comparative study of dr and ct in the application of close contacts screening for tuberculosis outbreaks. Radiol. Infect. Dis. 3(1), 34-39 (2016). doi: 10.1016/j.jrid.2016.01.004http://doi.org/10.1016/j.jrid.2016.01.004
L. Chen, B. Li, L. Zhang et al., 3D positioning of defects for gas turbine blades based on digital radiographic projective imaging. NDT & E Int. 133, 102751 (2022). doi: 10.1016/j.ndteint.2022.102751http://doi.org/10.1016/j.ndteint.2022.102751
A.T. Susanto, P. Prajitno, K. Kurnianto, Development of low-cost industrial x-ray computed tomography system based on digital fluoroscopy. J. Phys. Conference Series 1825, 012033 (2021). doi: 10.1088/1742-6596/1825/1/012033http://doi.org/10.1088/1742-6596/1825/1/012033
X.L. Ju, B. Deng, K. Li et al., Calibrating the linearity between grayscale and element content for X-ray KES imaging of alloys. Nucl. Sci. Tech. 33, 1 (2022). doi: 10.1007/s41365-022-00986-3http://doi.org/10.1007/s41365-022-00986-3
Y.Q. Yang, W.C. Fang, X.X. Huang et al., Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy. Nucl. Sci. Tech. 34, 11(2023) doi: 10.1007/s41365-022-01163-2http://doi.org/10.1007/s41365-022-01163-2..
Y.J. Ma, Y. Ren, P. Feng et al., Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography. Nucl. Sci. Tech. 32, 41 (2021) doi: 10.1007/s41365-021-00874-2http://doi.org/10.1007/s41365-021-00874-2..
Z. He, N. Huang, P. Wang et al., Spatial resolution and image processing for pinhole camera- based X-ray fluorescence imaging: A simulation study. Nucl. Sci. Tech. 33, 64 (2022) doi: 10.1007/s41365-022-01036-8http://doi.org/10.1007/s41365-022-01036-8..
D. Mery, Computer vision for X-ray testing. Cambridge International Law Journal (2015). doi: 10.1007/978-3-319-20747-6http://doi.org/10.1007/978-3-319-20747-6
G. Wang, L.F. Xu, J.L. Shen et al., Iterative and accurate determination of small angle X-ray scattering background. Nucl. Sci. Tech. 27, 105 (2016). doi: 10.1007/S41365-016-0108-4http://doi.org/10.1007/S41365-016-0108-4
E.M. Souza, S.C.A. Correa, A.X. Silva et al., Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications. Appl. Radiat. Isotop. 66, 587-592 (2008). doi: 10.1016/j.apradiso.2007.11.004http://doi.org/10.1016/j.apradiso.2007.11.004
P. Liaparinos, I. Kandarakis, D.A. Cavouras et al., Modeling granular phosphor screens by Monte Carlo methods. Med. Phys. 33, 4502 (2006). doi: 10.1118/1.2372217http://doi.org/10.1118/1.2372217
J.C. Wagner, D.E. Peplow, S.W. Mosher et al., Review of hybrid (deterministic/Monte Carlo) radiation transport methods, codes, and applications at Oak Ridge National Laboratory. Prog. Nucl. Sci. Technol. 2, 808-814 (2011). doi: 10.15669/PNST.2.808http://doi.org/10.15669/PNST.2.808
H. Jin, D.C. Jespersen, P. Mehrotra et al., High performance computing using MPI and OpenMP on multi-core parallel systems. Parallel Comput. 37, 562-575 (2011). doi: 10.1016/j.parco.2011.02.002http://doi.org/10.1016/j.parco.2011.02.002
J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Meth. Phys. Res. Sect. A 835, 186-225 (2016). doi: 10.1016/j.nima.2016.06.125http://doi.org/10.1016/j.nima.2016.06.125
Y. Wang, J.G. Liang, Q. Zhang et al., Development and verification of Geant4-based parallel computing Monte Carlo simulations for nuclear logging applications. Ann. Nucl. Energy 172, 109079 (2022). doi: 10.1016/j.anucene.2022.109079http://doi.org/10.1016/j.anucene.2022.109079..
X.Y. Wang, J.G. Liang, Y.L. Li et al., Hybrid Monte Carlo methods for Geant4 based nuclear well logging implementation. Ann. Nucl. Energy 169, 108824 (2022). doi: 10.1016/j.anucene.2021.108824http://doi.org/10.1016/j.anucene.2021.108824...
L.L. Lin, Y. Wang, Q. Zhang et al., A Monte Carlo-based Adaptive Reduced Order Model for Gamma Density Measurement. Ann. Nucl. Energy 178, 109341 (2022). doi: 10.1016/j.anucene.2022.109341http://doi.org/10.1016/j.anucene.2022.109341..
W. Tang, J.G. Liang, Y. Ge et al., A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation. Nucl. Sci. Tech. 33, 154 (2022) doi: 10.1007/s41365-022-01144-5http://doi.org/10.1007/s41365-022-01144-5..
M. Kazemi, H. Afarideh, Z. Riazi, Evaluation of open MPI and MPICH2 performances for the computation time in proton therapy dose calculations with Geant4. J. Korean Phys. Soc. 67, 1686-1691 (2015). doi: 10.3938/JKPS.67.1686http://doi.org/10.3938/JKPS.67.1686
M.D. Holbrook, D.P. Clark, C.T. Badea, Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector. Phys. Med. Biol. 65, 205012 (2020). doi: 10.1088/1361-6560/aba8b2http://doi.org/10.1088/1361-6560/aba8b2
N. Gholami, M.M. Dehshibi, A.I. Adamatzky et al., A novel method for reconstructing CT images in GATE/GEANT4 with application in medical imaging: A complexity analysis approach. J. Inf. Process. 28, 161-168 (2020). doi: 10.2197/ipsjjip.28.161http://doi.org/10.2197/ipsjjip.28.161
B. I. Weiner, W.E. Craighead, The Corsini Encyclopedia of Psychology (2010). doi: 10.5860/choice.47-6008http://doi.org/10.5860/choice.47-6008
R.F. Tate, G.W. Klett, Optimal confidence intervals for the variance of a normal distribution. J. Am. Stat. Assoc. 54, 674-682 (1959). doi: 10.1080/01621459.1959.10501528http://doi.org/10.1080/01621459.1959.10501528
S.F. O'Brien, L.Q. Yi, How do I interpret a confidence interval? Transfusion 56(7), 1680-1683 (2016). doi: 10.1111/trf.13635http://doi.org/10.1111/trf.13635
M. Amdah, Validity of the single processor approach to achieving large scale computing capabilities. Association for Computing Machinery, New York, NY, USA, 483–485(1967). doi: 10.1145/1465482.1465560http://doi.org/10.1145/1465482.1465560
R. Schofield, L. King, U. Tayal et al., Image reconstruction: Part 1 - understanding filtered back projection, noise and image acquisition. J. Cardiovasc. Comput. 14, 219-225 (2020). doi: 10.1016/j.jcct.2019.04.008http://doi.org/10.1016/j.jcct.2019.04.008
J. Ma., Y. Song, Q.S. Wang et al., Ring artifact correction for X-ray computed tomography. High Power Laser and Particle Beams 26, 124001 (2014). doi: 10.3788/HPLPB20142612.124001http://doi.org/10.3788/HPLPB20142612.124001 (in Chinese)
M.T. Hussani, M.H. Hayani, The use of filtered back projection algorithm for reconstruction of tomographic image. Al-Nahrain Journal for Engineering Sciences 17, 151-156 (2014). https://nahje.com/index.php/main/article/view/216https://nahje.com/index.php/main/article/view/216
Y.H. Luo, Study of exponential filter in ct image reconstruction filtering inverse projection algorithm. Computer Science 41(z1), 220-223 (2014). https://ir.lzu.edu.cn/handle/262010/131252https://ir.lzu.edu.cn/handle/262010/131252
M. Welvaert, Y. Rosseel, On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS ONE, 8, e77089 (2013). doi: 10.1371/journal.pone.0077089http://doi.org/10.1371/journal.pone.0077089
J. Wu, H.L. Huang, Y. Qiu et al., Remote sensing image fusion based on average gradient of wavelet transform. IEEE International Conference Mechatronics and Automation 4, 1817-1821 (2005). doi: 10.1109/ICMA.2005.1626836http://doi.org/10.1109/ICMA.2005.1626836
D.Y. Tsai, Y. Lee, E. Matsuyama et al., Information entropy measure for evaluation of image quality. J. Digit. Imaging 21(3), 338-347 (2008). doi: 10.1007/s10278-007-9044-5http://doi.org/10.1007/s10278-007-9044-5
Q. Zhang, Q. Zhang, Y. Ge et al., GMAC: A Geant4-based Monte Carlo automated computational platform for developing nuclear tool digital twins. Appl. Radiat. Isotopes 192, 110579 (2023). doi: 10.1016/j.apradiso.2022.110579http://doi.org/10.1016/j.apradiso.2022.110579
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构