1.Northwest Normal University, Lanzhou 730070, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
† songhs@nwnu.edu.cn
‡ yanduo@impcas.ac.cn
Scan for full text
Towards real-time digital pulse process algorithms for CsI(Tl) detector array at External Target Facility in HIRFL-CSR[J]. 核技术(英文版), 2023,34(9):131
Tao Liu, Hai-Sheng Song, Yu-Hong Yu, et al. Towards real-time digital pulse process algorithms for CsI(Tl) detector array at External Target Facility in HIRFL-CSR[J]. Nuclear Science and Techniques, 2023,34(9):131
Towards real-time digital pulse process algorithms for CsI(Tl) detector array at External Target Facility in HIRFL-CSR[J]. 核技术(英文版), 2023,34(9):131 DOI: 10.1007/s41365-023-01272-6.
Tao Liu, Hai-Sheng Song, Yu-Hong Yu, et al. Towards real-time digital pulse process algorithms for CsI(Tl) detector array at External Target Facility in HIRFL-CSR[J]. Nuclear Science and Techniques, 2023,34(9):131 DOI: 10.1007/s41365-023-01272-6.
A fully digital data acquisition system based on a field-programmable gate array (FPGA) was developed for a CsI(Tl) array at the External Target Facility (ETF)in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by ,γ,-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard ,γ, and ,α, sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution and digital charge comparison was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33 MeV ,γ, rays and excellent ,α,-,γ, identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.
CsI(Tl) arrayOn-line digital algorithmsMoving average filterMoving window deconvolutionOn-line particle identification algorithms
I. Tanihata, Radioactive beam science, past, present and future. Nucl. Instrum. Methods Phys. Res. B 266, 4067 (2008). doi: 10.1016/j.nimb.2008.05.088http://doi.org/10.1016/j.nimb.2008.05.088
Alexandra Gade, Nuclear spectroscopy with fast exotic beams. Phys. Scr. T152, 014004 (2013). doi: 10.1088/0031-8949/2013/T152/014004http://doi.org/10.1088/0031-8949/2013/T152/014004
Y.Z. Sun, Study of Single Proton Knockout from 16C. Ph.D. Thesis, University of Chinese Academy of Sciences (2019).
Y.Z. Sun, Z.Y. Sun, S.T. Wang et al., The charged fragment detector system of the External Target Facility. Nucl. Instrum. Methods Phys. Res. A 927, 390 (2019). doi: 10.1016/j.nima.2019.02.067http://doi.org/10.1016/j.nima.2019.02.067
X.H. Zhang, S.W. Tang, P. Ma et al., A multiple sampling ionization chamber for the External Target Facility. Nucl. Instrum. Methods Phys. Res. A 795, 389 (2015). doi: 10.1016/j.nima.2015.06.022http://doi.org/10.1016/j.nima.2015.06.022
Y. Sun, Z.Y. Sun, Y.H. Yu et al., Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR. Nucl. Instrum. Methods Phys. Res. A 893, 68 (2018). doi: 10.1016/j.nima.2018.03.030http://doi.org/10.1016/j.nima.2018.03.030
Y.Z. Sun, Z.Y. Sun, S.T. Wang et al., The drift chamber array at the External Target Facility in HIRFL-CSR. Nucl. Instrum. Methods Phys. Res. A 894, 72 (2018). doi: 10.1016/j.nima.2018.03.044http://doi.org/10.1016/j.nima.2018.03.044
K. Yue, Z.Y. Sun, S.T. Wang et al., A CsI(Tl) gamma detection array at the external target hall of CSRm. Nucl. Instrum. Methods Phys. Res. B 317, 653 (2013). doi: 10.1016/j.nimb.2013.07.037http://doi.org/10.1016/j.nimb.2013.07.037
S. Takeuchi, T. Motobayashi, Y. Togano et al., DALI2: A NaI(Tl) detector array for measurements of γ rays from fast nuclei. Nucl. Instrum. Methods Phys. Res. A 763, 596 (2014). doi: 10.1016/j.nima.2014.06.087http://doi.org/10.1016/j.nima.2014.06.087
Pieter Doornenbal, In-beam gamma-ray spectroscopy at the RIBF. Prog. Theor. Exp. Phys. 2012, 03C004 (2012). doi: 10.1093/ptep/pts076http://doi.org/10.1093/ptep/pts076
H. Alvarez-Pol, J. Benlliure, E. Casarejos et al., Design studies and first crystal tests for the R3B calorimeter. Nucl. Instrum. Methods Phys. Res. B 266, 4616 (2008). doi: 10.1016/j.nimb.2008.05.113http://doi.org/10.1016/j.nimb.2008.05.113
H. Alvarez-Pol, N. Ashwood, T. Aumann et al., Performance analysis for the CALIFA Barrel calorimeter of the R3B experiment. Nucl. Instrum. Methods Phys. Res. A 767, 453 (2014). doi: 10.1016/j.nima.2014.09.018http://doi.org/10.1016/j.nima.2014.09.018
L. Zhao, L.-F. Kang, J.-W. Zhou et al., A 16-Channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). doi: 10.13538/j.1001-8042/nst.25.010401http://doi.org/10.13538/j.1001-8042/nst.25.010401
X.-W. Zhao, Y. Qian, J. Kong et al., Readout electronics for CSR-ETF silicon strip array detector system. Nucl. Sci. Tech. 25, 040402 (2014). doi: 10.13538/j.1001-8042/nst.25.040402http://doi.org/10.13538/j.1001-8042/nst.25.040402
H.-B. Yang, X.-Q. Li, Y.-H. Yu et al., Design and evaluation of prototype readout electronics for nuclide detector in detector in Very Large Area Space Telescope. Nucl. Sci. Tech. 33, 65 (2022). doi: 10.1007/s41365-022-01047-5http://doi.org/10.1007/s41365-022-01047-5
Y.-Y. Li, C.-Y. Li, K. Hu, Design and development of multi-channel front end electronics based on dual-polarity charge-to-digital converter for SiPM detector applications. Nucl. Sci. Tech. 34, 18 (2023). doi: 10.1007/s41365-023-01168-5http://doi.org/10.1007/s41365-023-01168-5
J. Kong, Y. Qian, H. Zhao et al., Development of the readout electronics for the HIRFL-CSR array detectors. Journal of Instrumentation 14, P02012 (2019). doi: 10.1088/1748-0221/14/02/P02012http://doi.org/10.1088/1748-0221/14/02/P02012
S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second Edition. California Technical Publishing, 1999.
H.N. Liu, Study of Neutron-Proton Correlations and 3N Forces in 12C. Ph.D. Thesis, Peking University (2015).
A. Syntfeld-Każuch, M. Moszyński, Ł. Świderski et al., Light Pulse Shape Dependence on γ-ray Energy in CsI(Tl). IEEE Trans. Nucl. Sci. 55, 1246 (2008). doi: 10.1109/TNS.2008.922805http://doi.org/10.1109/TNS.2008.922805
X. Lu, S. Gridin, R.T. Williams et al., Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations. Phys. Rev. Appl. 7, 014007 (2017). doi: 10.1103/PhysRevApplied.7.014007http://doi.org/10.1103/PhysRevApplied.7.014007
R.S. Storey, W. Jack, A. Ward, The Fluorescent Decay of CsI(Tl) for Particles of Different Ionization Density. Proc. Phys. Soc. 72, 1 (1958). doi: 10.1088/0370-1328/72/1/302http://doi.org/10.1088/0370-1328/72/1/302
H. Grassmann, E. Lorenz, H.-G. Moser, Properties of CsI(Tl) - Renaissance of an old scintillation material. Nucl. Instrum. Methods Phys. Res. A 228, 323 (1985). doi: 10.1016/0168-9002(85)90276-1http://doi.org/10.1016/0168-9002(85)90276-1
P. Schotanus, R. Kamermans, P. Dorenbos, Scintillation characteristics of pure and Tl-doped CsI crystals. IEEE Trans Nucl. Sci. 37, 177 (1990). doi: 10.1109/23.106614http://doi.org/10.1109/23.106614
S. Carboni, S. Barlini, L. Bardelli et al., Particle identification using the ΔE-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project. Nucl. Instrum. Methods Phys. Res. A 664, 251 (2012). doi: 10.1016/j.nima.2011.10.061http://doi.org/10.1016/j.nima.2011.10.061
J. Alarja, A. Dauchy, A. Giorni et al., Charged particles identification with a CsI(Tl) scintillator. Nucl. Instrum. Methods Phys. Res. A 242, 352 (1986). doi: 10.1016/0168-9002(86)90232-9http://doi.org/10.1016/0168-9002(86)90232-9
S. Aiello, A. Anzalone, G. Cardella et al., Light response and particle identification with large CsI(Tl) crystals coupled to photodiodes. Nucl. Instrum. Methods Phys. Res. A 369, 50 (1996). doi: 10.1016/0168-9002(95)00763-6http://doi.org/10.1016/0168-9002(95)00763-6
W. Skulski, M. Momayezi, Particle identification in CsI(Tl) using digital pulse shape analysis. Nucl. Instrum. Methods Phys. Res. A 458, 759 (2001). doi: 10.1016/S0168-9002(00)00938-4http://doi.org/10.1016/S0168-9002(00)00938-4
A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 (1964). doi: 10.1021/ac60214a047http://doi.org/10.1021/ac60214a047
P. Marchand, L. Marmet, Binomial smoothing filter: A way to avoid some pitfalls of least-squares polynomial smoothing. Rev. Sci. Instrum. 54, 1034 (1983). doi: 10.1063/1.1137498http://doi.org/10.1063/1.1137498
P.H.C. Eilers, A perfect smoother. Anal. Chem. 75, 3631 (2003). doi: 10.1021/ac034173t7http://doi.org/10.1021/ac034173t7
É. Barat, T. Dautremer, T. Montagu, et al., A bimodal Kalman smoother for nuclear spectrometry. Nucl. Instrum. Methods Phys. Res. A 567, 350 (2006). doi: 10.1016/j.nima.2006.05.243http://doi.org/10.1016/j.nima.2006.05.243
David G. Abrecht, Jon M. Schwantes, Ravi K. Kukkadapu, et al., Real-time noise reduction for Mössbauer spectroscopy through online implementation of a modified Kalman filter. Nucl. Instrum. Methods Phys. Res. A 773, 66 (2015). doi: 10.1016/j.nima.2014.10.053http://doi.org/10.1016/j.nima.2014.10.053
A. Geraci, I. Rech, E. Gatti, et al., Shared baseline restoration at minimum noise for high resolution spectroscopy. Nucl. Instrum. Methods Phys. Res. A 482, 441 (2002). doi: 10.1016/S0168-9002(01)01509-1http://doi.org/10.1016/S0168-9002(01)01509-1
E.M. Khilkevitch, A.E. Shevelev, I.N. Chugunov, et al., Advanced algorithms for signal processing scintillation gamma ray detectors at high counting rates. Nucl. Instrum. Methods Phys. Res. A 977, 164309 (2020). doi: 10.1016/j.nima.2020.164309http://doi.org/10.1016/j.nima.2020.164309
Jia-wen Zhou, Shu-bin Liu, Long-fei Kang, et al., Research on the Trigger System of Readout Electronics in HIRFL-CSR. Nuclear Electronics & Detection Technology 33, 152 (2013).
Mark A. Nelson, Brian D. Rooney, Derek R. Dinwiddie, et al., Analysis of digital timing methods with BaF2 scintillators. Nucl. Instrum. Methods Phys. Res. A 505, 324 (2003). doi: 10.1016/S0168-9002(03)01078-7http://doi.org/10.1016/S0168-9002(03)01078-7
A. Fallu-Labruyere, H. Tan, W. Henning, et al., Time resolution studies using digital constant fraction discrimination. Nucl. Instrum. Methods Phys. Res. A 579, 247 (2007). doi: 10.1016/j.nima.2007.04.048http://doi.org/10.1016/j.nima.2007.04.048
L. Bardelli, G. Poggi, M. Bini, et al., Time measurements by means of digital sampling techniques: a study case of 100 ps FWHM time resolution with a 100 MSample/s, 12 bit digitizer. Nucl. Instrum. Methods Phys. Res. A 521, 480 (2004). doi: 10.1016/j.nima.2003.10.106http://doi.org/10.1016/j.nima.2003.10.106
K. Wang, S. Samaranayake, A. Estrade. Investigation of a digitizer for the plastic scintillation detectors of time-of-flight mass measurements. Nucl. Instrum. Methods Phys. Res. A 1027, 166050 (2022). doi: 10.1016/j.nima.2021.166050http://doi.org/10.1016/j.nima.2021.166050
Shefali Saxena, and Ayman I. Hawari, Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications. IEEE Trans. Nucl. Sci. 64, 1733 (2017). doi: 10.1109/TNS.2017.2692219http://doi.org/10.1109/TNS.2017.2692219
V. Radeka, Optimum Signal-Processing for Pulse-Amplitude Spectrometry in the Presence of High-Rate Effects and Noise. IEEE Trans. Nucl. Sci. 15, 455 (1968). doi: 10.1109/TNS.1968.4324970http://doi.org/10.1109/TNS.1968.4324970
Yunchen Qian, Huaiqiang Zhang, Fenhua Lu, et al., Parameter optimization and pile-up identification of cusp shaping for nuclear pulse signal. Nuclear Techniques 44(11), 110402 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.110402http://doi.org/10.11889/j.0253-3219.2021.hjs.44.110402
M. Bogovac and C. Csato, Implementation of a truncated cusp filter for real-time digital pulse processing in nuclear spectrometry. Nucl. Instrum. Methods Phys. Res. A 694, 101 (2012). doi: 10.1016/j.nima.2012.07.042http://doi.org/10.1016/j.nima.2012.07.042
V. Radeka, Trapezoidal filter of signals from large germanium detectors at high rates. Nucl. Instrum. Methods 99, 525 (1972). doi: 10.1016/0029-554X(72)90666-0http://doi.org/10.1016/0029-554X(72)90666-0
V. T. Jordanov, G.F. Knoll, Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy. Nucl. Instrum. Methods Phys. Res. A 345, 337 (1994). doi: 10.1016/0168-9002(94)91011-1http://doi.org/10.1016/0168-9002(94)91011-1
C. Imperiale, A. Imperiale, On nuclear spectrometry pulses digital shaping and processing. Measurement 30, 49 (2001). doi: 10.1016/S0263-2241(00)00057-9http://doi.org/10.1016/S0263-2241(00)00057-9
H.-Q. Zhang, L.-Q. Ge, B. Tang et al., Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system. Nucl. Sci. Tech. 24, 060407 (2013). doi: 10.13538/j.1001-8042/nst.2013.06.011http://doi.org/10.13538/j.1001-8042/nst.2013.06.011
A. Georgiev, W. Gast, Digital pulse processing in high resolution, high throughput gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 40, 770 (1993). doi: 10.1109/23.256659http://doi.org/10.1109/23.256659
J. Stein, F. Scheuer, W. Gast, et al., X-ray detectors with digitized preamplifiers. Nucl. Instrum. Methods Phys. Res. B 113, 141 (1996). doi: 10.1016/0168-583X(95)01417-9http://doi.org/10.1016/0168-583X(95)01417-9
M. Bendel, R. Gernhäuser, W.F. Henning, et al., RPID - A new digital particle identification algorithm for CsI(Tl) scintillators. Eur. Phys. J. A 49, 69 (2013). doi: 10.1140/epja/i2013-13069-8http://doi.org/10.1140/epja/i2013-13069-8
M. Nakhostin, Recursive Algorithms for Real-Time Digital CR-(RC)n Pulse Shaping. IEEE Trans. Nucl. Sci. 58, 2378 (2011). doi: 10.1109/TNS.2011.2164556http://doi.org/10.1109/TNS.2011.2164556
Yinyu Liu, Jinglong Zhang, Lifang Liu, et al., Implementation of real-time digital CR-RCm shaping filter on FPGA for gamma-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. A 906, 1 (2018). doi: 10.1016/j.nima.2018.05.020http://doi.org/10.1016/j.nima.2018.05.020
H.-Q. Zhang, Z.-D. Li, B. Tang et al., Optimal parameter choice of CR-RCm digital filter in nuclear pulse processing. Nucl. Sci. Tech. 30, 108 (2019). doi: 10.1007/s41365-019-0638-7http://doi.org/10.1007/s41365-019-0638-7
J. Kamleitner, S. Coda, S. Gnesin, et al., Comparative analysis of digital pulse processing methods at high count rates. Nucl. Instrum. Methods Phys. Res. A 736, 88 (2014). doi: 10.1016/j.nima.2013.10.023http://doi.org/10.1016/j.nima.2013.10.023
M. Moszyński, D. Wolski, T. Ludziejewski, et al., Particle identification by digital charge comparison method applied to CsI(Tl) crystal coupled to photodiode. Nucl. Instrum. Methods Phys. Res. A 336, 587 (1993). doi: 10.1016/0168-9002(93)91267-Qhttp://doi.org/10.1016/0168-9002(93)91267-Q
Y. Kaschuck and B. Esposito, Neutron/γ-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. Methods Phys. Res. A 551, 420 (2005). doi: 10.1016/j.nima.2005.05.071http://doi.org/10.1016/j.nima.2005.05.071
J.-Q. Faisal, J.-L. Lou, Z.-H. Li et al., A pulse shape discrimination of CsI(Tl) crystal with 6He beam. Nucl. Sci. Tech. 21, 35 (2010). doi: 10.13538/j.1001-8042/nst.21.35-38http://doi.org/10.13538/j.1001-8042/nst.21.35-38
C.-L. Lan, X.-C. Ruan, G. Liu et al., Particle identification using CsI(Tl) crystal with three different methods. Nucl. Sci. Tech. 19, 354 (2008). doi: 10.1016/S1001-8042(09)60018-Xhttp://doi.org/10.1016/S1001-8042(09)60018-X
S.D. Jastaniah and P.J. Sellin, Digital techniques for n/γ pulse shape discrimination and capture-gated neutron spectroscopy using liquid scintillators. Nucl. Instrum. Methods Phys. Res. A 517, 202 (2004). doi: 10.1016/j.nima.2003.08.178http://doi.org/10.1016/j.nima.2003.08.178
R.A. Winyard, J.E. Lutkin and G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators,I. Nucl. Instrum. Methods 95, 141 (1971). doi: 10.1016/0029-554X(71)90054-1http://doi.org/10.1016/0029-554X(71)90054-1
R.A. Winyard and G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators,II. Nucl. Instrum. Methods 98, 525 (1972). doi: 10.1016/0029-554X(72)90238-8http://doi.org/10.1016/0029-554X(72)90238-8
J.A. Biggerstaff, R.L. Becker and M.T. Mcellistrem, Charged particle discrimination in a CsI(Tl) detector. Nucl. Instrum. Methods 10, 327 (1961). doi: 10.1016/S0029-554X(61)80127-4http://doi.org/10.1016/S0029-554X(61)80127-4
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构