1.College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
2.The Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
3.Fujian Fuqing Nuclear Power Co., Ltd., Fujian 350318, China
† jiangh@fzu.edu.cn
Scan for full text
Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors[J]. 核技术(英文版), 2023,34(8):117
Jing Chen, Yan-Zhen Lu, Hao Jiang, et al. Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors[J]. Nuclear Science and Techniques, 2023,34(8):117
Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors[J]. 核技术(英文版), 2023,34(8):117 DOI: 10.1007/s41365-023-01276-2.
Jing Chen, Yan-Zhen Lu, Hao Jiang, et al. Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors[J]. Nuclear Science and Techniques, 2023,34(8):117 DOI: 10.1007/s41365-023-01276-2.
The in-core self-powered neutron detector (SPND) acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors. Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management. To completely extract the correlated state information of SPNDs, we constructed a twin model based on a generalized regression neural network (GRNN) that represents the common relationships among overall signals. Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring systems, which calculated the error probability distribution between the model outputs and real values. Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures. A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity. The experimental evaluation of the proposed method showed promising results, with excellent output consistency and high detection accuracy for both single- and multiple-point faulty SPNDs. For unexpected excessive failures, the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.
Self-powered neutron detectorTwin modelFault detectionFault toleranceGeneralized regression neural networkNuclear power plant
M. Nakamichi, Y. Nagao, C. Yamamura, et al., Characterization of hybrid self-powered neutron detector under neutron irradiation. Fusion. Eng. Des. 51-52, 837-841 (2000). doi: 10.1016/S0920-3796(00)00452-Xhttp://doi.org/10.1016/S0920-3796(00)00452-X
W. Xu, J. Li, H. xie, et al., Conceptual design and safety characteristics of a new multi-mission high flux research reactor. Nucl. Sci. Tech. 34, 34 (2023). doi: 10.1007/s41365-023-01191-6http://doi.org/10.1007/s41365-023-01191-6
X. J. Peng, Q. Li, K. Wang, Fault detection and isolation for self powered neutron detectors based on principal component analysis. Ann. Nucl. Energy. 85, 213-219 (2015). doi: 10.1016/j.anucene.2015.05.016http://doi.org/10.1016/j.anucene.2015.05.016
K. Moshkbar-Bakhshayesh, M. B. Ghofran, Transient identification in nuclear power plants: A review. Prog. Nucl. Energy. 67, 23-32 (2019). doi: 10.1016/j.pnucene.2013.03.017http://doi.org/10.1016/j.pnucene.2013.03.017
J. Ling, G. J. Liu, J. L. Li, et al., Fault prediction method for nuclear power machinery based on bayesian ppca recurrent neural network model. Nucl. Sci. Tech. 31, 8 (2020). doi: 10.1007/s41365-020-00792-9http://doi.org/10.1007/s41365-020-00792-9
P. Li, J. R. Chu, R. Han, Research on the screening method of predictive maintenance monitoring equipment in nuclear power plant. PHM-BESANCON. 128-131 (2020). doi: 10.1109/PHM-Besancon49106.2020.00027http://doi.org/10.1109/PHM-Besancon49106.2020.00027
J. Hui, J. Yuan, Kalman filter, particle filter, and extended state observer for linear state estimation under perturbation (or noise) of mhtgr. Prog. Nucl. Energy. 148, 104231 (2022). doi: 10.1016/j.pnucene.2022.104231http://doi.org/10.1016/j.pnucene.2022.104231
S. Gautam, P. K. Tamboli, K. Roy, et al., Sensors incipient fault detection and isolation of nuclear power plant using extended kalman filter and kullback-leibler divergence. ISA T. 92, 180-190 (2019). doi: 10.1016/j.isatra.2019.02.011http://doi.org/10.1016/j.isatra.2019.02.011
J. Hui, J. Yuan, Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor. Energy. 223, 120066 (2021). doi: 10.1016/j.energy.2021.120066http://doi.org/10.1016/j.energy.2021.120066
Q. Gan, B. Wu, J. Song, Rapid parameter-based and visual Monte Carlo modeling method of fission reactor core. Nucl. Tech. 39, 060501 (2016). doi: 10.11889/j.0253-3219.2016.hjs.39.060501http://doi.org/10.11889/j.0253-3219.2016.hjs.39.060501
J. Hui, J. Yuan, Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques. Energy. 241, 122836 (2022). doi: 10.1016/j.energy.2021.122836http://doi.org/10.1016/j.energy.2021.122836
J. Chen, Z. S. Liu, H. Jiang, et al., Anomaly detection of control rod drive mechanism using long short-term memory-based autoencoder and extreme gradient boosting. Nucl. Sci. Tech. 33, 127 (2022). doi: 10.1007/s41365-022-01111-0http://doi.org/10.1007/s41365-022-01111-0
Y. Zhao, F. Di. Maio, E. Zio, et al., Optimization of a dynamic uncertain causality graph for fault diagnosis in nuclear power plant. Nucl. Sci. Tech. 28, 34 (2017). doi: 10.1007/s41365-017-0184-0http://doi.org/10.1007/s41365-017-0184-0
W. Q. Lin, X. R. Miao, J. Chen, et al., Forecasting thermal parameters for ultra-high voltage transformers using long- and short-term time-series network with conditional mutual information. IET Electr. Power App. 16, 548-564 (2022). doi: 10.1049/elp2.12175http://doi.org/10.1049/elp2.12175
S. Mandal, B. Santhi, S. Sridhar, et al., Sensor fault detection in nuclear power plants using symbolic dynamic filter. Ann. Nucl. Energy. 134, 390-400 (2019). doi: 10.1016/j.anucene.2019.07.036http://doi.org/10.1016/j.anucene.2019.07.036
V. S. Yellapu, V. Vajpayee, A. P. Tiwari, Online fault detection and isolation in advanced heavy water reactor using multiscale principal component analysis. IEEE T. Nucl. Sci. 66, 1790-1803 (2019). doi: 10.1109/TNS.2019.2919414http://doi.org/10.1109/TNS.2019.2919414
V. S. Yellapu, W. D. Zhang, V. Vajpayee, et al., A multiscale data reconciliation approach for sensor fault detection. Prog. Nucl. Energy. 135, 103707 (2021). doi: 10.1016/j.pnucene.2021.103707http://doi.org/10.1016/j.pnucene.2021.103707
W. Li, M. Peng, Q. Wang, Fault identification in pca method during sensor condition monitoring in a nuclear power plant. Ann. Nucl. Energy. 121, 135-145 (2018). doi: 10.1016/j.anucene.2018.07.027http://doi.org/10.1016/j.anucene.2018.07.027
S. Chatterjee, S. K. Surwase, M. Bhushan, et al., Cluster statistics based normalization for online fault diagnosis of self-powered neutron detectors. ICICIC. (2017).
Y. Yu, M. jun Peng, H. Wang, et al., Improved pca model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant. Ann. Nucl. Energy. 148, 107662 (2020). doi: 10.1016/j.anucene.2020.107662http://doi.org/10.1016/j.anucene.2020.107662
N. S. Rao, C. Greulich, P. Ramuhalli, et al., Estimation of sensor measurement errors in reactor coolant systems using multi-sensor fusion. Nucl. Eng. Des. 375, 111024 (2021). doi: 10.1016/j.nucengdes.2020.111024http://doi.org/10.1016/j.nucengdes.2020.111024
J. J. Wang, L. K. Ye, R. X. Gao, et al., Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57, 3920-3934 (2019). doi: 10.1080/00207543.2018.1552032http://doi.org/10.1080/00207543.2018.1552032
K. Guo, X. Wan, L. L. Liu, et al., Fault diagnosis of intelligent production line based on digital twin and improved random forest. Appl. Sci-Basel. 11, 7733 (2021). doi: 10.3390/app11167733http://doi.org/10.3390/app11167733
L. Y. Lin, P. Athe, P. Rouxelin, et al., Digital-twin-based improvements to diagnosis, prognosis, strategy assessment, and discrepancy checking in a nearly autonomous management and control system. Ann. Nucl. Energy. 166, 108715 (2022). doi: 10.1016/j.anucene.2021.108715http://doi.org/10.1016/j.anucene.2021.108715
Y. Cai, B. Starly, P. Cohen, et al., Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing 10, 1031-1042 (2017). doi: 10.1016/j.promfg.2017.07.094http://doi.org/10.1016/j.promfg.2017.07.094
R. M. Ayo-Imoru, A. A. Ali, P. N. Bokoro, et al., An enhanced fault diagnosis in nuclear power plants for a digital twin framework. ICECET. 2072-2077 (2021). doi: 10.1109/ICECET52533.2021.9698715http://doi.org/10.1109/ICECET52533.2021.9698715
W.Q. Liu, L.F. Han, L. Huang, et al., TMSR-SF0 data monitoring and visualization scheme based on digital twin. Nucl. Tech. 45, 020604 (2022). doi: 10.11889/j.0253-3219.2022.hjs.45.020604http://doi.org/10.11889/j.0253-3219.2022.hjs.45.020604
B. Kochunas, X. Huan, Digital twin concepts with uncertainty for nuclear power applications. Energies. 14, 4235 (2021). doi: 10.3390/en14144235http://doi.org/10.3390/en14144235
A. C. F. Guimaraes, C. M. F. Lapa, M. D. Moreira, Fuzzy methodology applied to probabilistic safety assessment for digital system in nuclear power plants. Nucl. Eng. Des. 241, 3967-3976 (2011). doi: 10.1016/j.nucengdes.2011.06.044http://doi.org/10.1016/j.nucengdes.2011.06.044
M. Hu, F. Kong, D. Yu et al., Key technology and prospects of digital twin in field of advanced nuclear energy. Power. Syst. Tech. 45, 2514-2522 (2021). doi: 10.13335/j.1000-3673.pst.2021.0335http://doi.org/10.13335/j.1000-3673.pst.2021.0335 (in Chinese)
W. Wang, M. Liu, J. Li, Research and realization of virtual-real control of robot system for off-heap detector assisted installation based on digital twin. Ieee. J. Radio. Freq. Ident. 6, 810-814 (2022). doi: 10.1109/JRFID.2022.3209715http://doi.org/10.1109/JRFID.2022.3209715
H. Gong, S. Cheng, Z. Chen, et al., Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics. Nucl. Sci. Eng. 196, 668-693 (2022). doi: 10.1080/00295639.2021.2014752http://doi.org/10.1080/00295639.2021.2014752
S. A. Cancemi, R. Lo Frano, The application of machine learning for on-line monitoring nuclear power plant performance. NENE. 505 (2021).
W. Zhang, G. Wang, X. Zhu, et al., Digital twin-based optimization design method for aerospace electric thruster. J. Astronaut. 43, 518-527 (2022). doi: 10.3873/j.issn.1000-1328.2022.04.013http://doi.org/10.3873/j.issn.1000-1328.2022.04.013
J. Y. Li, H. Xia, S. Y. Cheng, Study on sensor with mechanical properties in nuclear power plant with application of bp neural network to fault tolerant control. MEE. 644, 56-89 (2013). doi: 10.4028/www.scientific.net/AMR.644.56http://doi.org/10.4028/www.scientific.net/AMR.644.56
M. C. Kim, J. Seo, W. Jung, et al., Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment. Nucl. Eng. Tech. 51, 692-701 (2019). doi: 10.1016/j.net.2018.11.012http://doi.org/10.1016/j.net.2018.11.012
J. Hui, J. Yuan, Neural network-based adaptive fault-tolerant control for load following of a mhtgr with prescribed performance and crdm faults. Energy. 257, 124663 (2022). doi: 10.1016/j.energy.2022.124663http://doi.org/10.1016/j.energy.2022.124663
C. Li, R. Yu, W. Yu, et al., Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm. Nucl. Eng. Tech. 54, 3283-3292 (2022). doi: 10.1016/j.net.2022.04.014http://doi.org/10.1016/j.net.2022.04.014
P. H. Rangegowda, S. C. Patwardhan, S. Mukhopadhyay, Fault tolerant control of a nuclear steam generator in the presence of sensor biases. IFAC-PapersOnLine 53, 579-584 (2020). doi: 10.1016/j.ifacol.2020.06.097http://doi.org/10.1016/j.ifacol.2020.06.097
R. Behkam, H. Karami, M. S. Naderi, et al., Generalized regression neural network application for fault type detection in distribution transformer windings considering statistical indices. Compel. 41, 381-409 (2022). doi: 10.1108/COMPEL-06-2021-0199http://doi.org/10.1108/COMPEL-06-2021-0199
C. Zhang, X. W. Gao, Y. Li, et al., Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes. IEEE T. Semiconduct. M. 32, 75-81 (2019). doi: 10.1109/TSM.2018.2857818http://doi.org/10.1109/TSM.2018.2857818
A. Karlstrom, L. Johansson, J. Hill, On the modeling of tensile index from larger data sets. Nordic Pulp Paper Research Journal. 34, 289-303 (2019). doi: 10.1515/npprj-2018-0019http://doi.org/10.1515/npprj-2018-0019
Y. Wang, Y. Wang, J. Deng, et al., Recommendation algorithm based on jensen-shannon divergence. Comput. Sci. 46, 210-214 (2019). doi: 10.11896/j.issn.1002-137X.2019.02.032http://doi.org/10.11896/j.issn.1002-137X.2019.02.032 (in Chinese)
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构