1.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
† kjfan@hust.edu.cn
Scan for full text
Design and performance study of a dielectric-filled cavity beam current monitor for HUST-PTF[J]. 核技术(英文版), 2023,34(8):129
Ji-Qing Li, Kuan-Jun Fan, Zheng-Zheng Liu, et al. Design and performance study of a dielectric-filled cavity beam current monitor for HUST-PTF[J]. Nuclear Science and Techniques, 2023,34(8):129
Design and performance study of a dielectric-filled cavity beam current monitor for HUST-PTF[J]. 核技术(英文版), 2023,34(8):129 DOI: 10.1007/s41365-023-01278-0.
Ji-Qing Li, Kuan-Jun Fan, Zheng-Zheng Liu, et al. Design and performance study of a dielectric-filled cavity beam current monitor for HUST-PTF[J]. Nuclear Science and Techniques, 2023,34(8):129 DOI: 10.1007/s41365-023-01278-0.
To guarantee the exact proton dose applied to patients and ensure treatment safety while disrupting and destroying tumor cells, it is essential to accurately monitor the proton beam current in real-time during patient treatment. Because clinical treatment requires a proton beam current in the ñA range, nondestructive beam current monitors (BCMs) are preferred to minimize the degradation of beam quality. However, this poses significant challenges in accurately monitoring such extremely low beam intensities. This study proposes a cavity-type BCM equipped with a dielectric plate to reduce its dimensions and achieve sufficient measurement sensitivity for practical requirements. A prototype cavity BCM was fabricated, and offline testing was performed using a metal wire to simulate the beam to study its performance. Both the simulation and experimental results showed that the cavity BCM could measure ultralow proton beam currents with a resolution up to 0.03 nA.
Proton therapyBeam currentCavity BCMNondestructive
K. Ohnishi, N. Nakamura, H. Harada et al., Proton beam therapy for histologically or clinically diagnosed Stage I non-small cell lung cancer (NSCLC): The first nationwide retrospective study in Japan. Int. J. Radiat. Oncol. Biol. Phys. 106(1), 82-89 (2020). doi: 10.1016/j.ijrobp.2019.09.013http://doi.org/10.1016/j.ijrobp.2019.09.013
Z.Y. Mei, K.J. Fan, Z.K. Liang et al., Optimization of a B4C/graphite composite energy degrader and its shielding for a proton therapy facility. Nucl. Instrum. Meth. A 995, 165127 (2021). doi: 10.1016/j.nima.2021.165127http://doi.org/10.1016/j.nima.2021.165127
S.S. Cao, Y.B. Leng, R.X. Yuan et al., Methods study on high-resolution bunch charge measurement based on cavity monitor. Nucl. Tech. 44(04), 1-7 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.040101http://doi.org/10.11889/j.0253-3219.2021.hjs.44.040101 (in Chinese)
Belohrad D, Beam charge measurements. In Proceedings of DIPAC2011 (Hamburg, Germany, 2011), pp. 564-568
R.T. Pusch, F. Frommberger, W.C.A. Hillert et al., Measuring the intensity and position of a pA electron beam with resonant cavities. Phys. Rev. ST Accel. Beams. 15, 112801 (2020). doi: 10.1103/PhysRevSTAB.15.112801http://doi.org/10.1103/PhysRevSTAB.15.112801
S.S. Cao, R.X. Yuan, J. Chen et al., Dual-cavity beam arrival time monitor design for the Shanghai soft X-ray FEL facility. Nucl. Sci. Tech. 30, 72 (2019). doi: 10.1007/s41365-019-0593-3http://doi.org/10.1007/s41365-019-0593-3
J. Chen, S. Cao, Y. Leng et al., Study of the optimal amplitude extraction algorithm for cavity BPM. Nucl. Instrum. Meth. A. 1012, 165627 (2021). doi: 10.1016/j.nima.2021.165627http://doi.org/10.1016/j.nima.2021.165627
P. Nenzi, A. Ampollini, G. Bazzano et al., Development of a passive cavity beam intensity monitor for pulsed proton beams for medical applications. In Proceedings of IBIC’19 (Malmö, Sweden, 2019), pp. 41-44. doi: 10.18429/JACoW-IBIC2019-MOCO02http://doi.org/10.18429/JACoW-IBIC2019-MOCO02
S. Srinivasan, P.A. Duperrex, J.M. Schippers, Beamline characterization of a dielectric-filled reentrant cavity resonator as beam current monitor for a medical cyclotron facility. Phys. Med. 78, 101-108 (2020). doi: 10.1016/j.ejmp.2020.09.006http://doi.org/10.1016/j.ejmp.2020.09.006
S.S. Cao, Y.B. Leng, R.X. Yuan et al., Optimization of beam arrival and flight time measurement system based on cavity monitors at the SXFEL. IEEE T. Nucl. Sci. 68, 2-8 (2021). doi: 10.1109/TNS.2020.3034337http://doi.org/10.1109/TNS.2020.3034337
S. Shin, M. Wendt, Design studies for a high resolution cold cavity beam position monitor. IEEE T. Nucl. Sci. 57, 2159-2166 (2010). doi: 10.1109/TNS.2010.2049503http://doi.org/10.1109/TNS.2010.2049503
S. Walston, S. Boogert, C. Chung et al., Performance of a high resolution cavity beam position monitor system. Nucl. Instrum. Meth. A. 578, 1-22 (2007). doi: 10.1016/j.nima.2007.04.162http://doi.org/10.1016/j.nima.2007.04.162
M.D. Forno, P. Craievich, R. Baruzzo et al., A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor). Nucl. Instrum. Meth. A. 662, 1-22 (2012). doi: 10.1016/j.nima.2011.09.040http://doi.org/10.1016/j.nima.2011.09.040
R. Lorenz, Cavity beam position monitors. AIP Conf. Proc. 451, 53 (1998). doi: 10.1063/1.57039http://doi.org/10.1063/1.57039
D.H. Whittum, Y. Kolomensky, Analysis of an asymmetric resonant cavity as a beam monitor. Review of Scientific Instruments. 70, 2300-2313 (1999). doi: 10.1063/1.1149756http://doi.org/10.1063/1.1149756
S. Srinivasan, P.A. Duperrex, Dielectric-filled reentrant cavity resonator as a low-intensity proton beam diagnostic. Instruments 2, 24 (2018). doi: 10.3390/instruments2040024http://doi.org/10.3390/instruments2040024
S. Srinivasan, P.A. Duperrex, Reentrant cavity resonator for low intensity proton beam measurement. In Proceedings of IPAC2018 (Vancouver, Canada, 2018), pp. 2341-2344. doi: 10.18429/JACoW-IPAC2018-WEPAL069http://doi.org/10.18429/JACoW-IPAC2018-WEPAL069
M. Giordano, F. Momo, A. Sotgiu et al., On the design of a reentrant square cavity as resonator for low-frequency ESR spectroscopy. J. Physics. E Sci.Instrum. 16, 774-779 (1983). doi: 10.1088/0022-3735/16/8/017http://doi.org/10.1088/0022-3735/16/8/017
Macor Machinable Glass Ceramic Properties. http://accuratus.com/macormats.htmlhttp://accuratus.com/macormats.htmlhttp://accuratus.com/macormats.htmlhttp://accuratus.com/macormats.html
CST STUDIO SUITE. https://www.cst.comhttps://www.cst.comhttps://www.cst.comhttps://www.cst.com
J. Chen, Y.B. Leng, L.Y. Yu et al. Beam test results of high Q CBPM prototype for SXFEL. Nucl. Sci. Tech. 28, 51 (2017). doi: 10.1007/s41365-017-0195-xhttp://doi.org/10.1007/s41365-017-0195-x
Peter A. Mcintosh, Perturbation Measurements on RF Cavities at Daresbury. In Proceedings of EPAC1994 (Daresbury Laboratory, London, 1994), pp. 1283.
Q. Wang, Q. Luo, B. Sun, Design and performance study of an improved cavity bunch length monitor based on an optimized offline test scheme. Nucl. Instrum. Meth. A. 968, 163975 (2020). doi: 10.1016/j.nima.2020.163975http://doi.org/10.1016/j.nima.2020.163975
S.J. Russell, J.D. Gilpatrick, J.F. Power et al., Characterization of beam position monitors for measurement of second moment. In Proceedings of the 1995 Particle Accelerator Conference (Texas, USA, 1995), pp. 2580-2582. doi: 10.1109/PAC.1995.505624http://doi.org/10.1109/PAC.1995.505624
F.F. Wu, Z.R. Zhou, B.G. Sun et al., Design and Calculation of the stripline beam position monitor for HLS II storage ring. In Proceedings of IPAC’13 (Shanghai, China, May 2013)
W. Chen, J. Yang, B. Qin et al., Transmission calculation and intensity suppression for a proton therapy system. Nucl. Instrum. Meth. A. 881, 82-87 (2017). doi: 10.1016/j.nima.2017.10.047http://doi.org/10.1016/j.nima.2017.10.047
R. Ursic, R. Flood, C. Piller, 1 nA beam position monitoring system. In Proceedings of the 1997 Particle Accelerator Conference (Vancouver, Canada, 1997), pp. 2131-2133.
Principles of lock-in detection and the state of the art. https://www.zhinst.cn/china/en/resources/principles-of-lock-in-detectionhttps://www.zhinst.cn/china/en/resources/principles-of-lock-in-detectionhttps://www.zhinst.cn/china/en/resources/principles-of-lock-in-detectionhttps://www.zhinst.cn/china/en/resources/principles-of-lock-in-detection
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构