Your Location:
Home >
Browse articles >
Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors
SYNCHROTRON RADIATION TECHNOLOGY AND APPLICATIONS | Updated:2023-09-19
    • Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors

    • Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors

    • 核技术(英文版)   2023年34卷第8期 文章编号:122
    • DOI:10.1007/s41365-023-01282-4    

      中图分类号:

    Scan for full text

  • Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors[J]. 核技术(英文版), 2023,34(8):122 DOI: 10.1007/s41365-023-01282-4.

    Jia-Nan Xie, Hui Jiang, Ai-Guo Li, et al. Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors[J]. Nuclear Science and Techniques, 2023,34(8):122 DOI: 10.1007/s41365-023-01282-4.

  •  

0

浏览量

1

Downloads

0

CSCD

文章被引用时,请邮件提醒。
Submit
工具集
下载
参考文献导出
分享
收藏
添加至我的专辑

相关文章

Discrimination of pp solar neutrinos and 14C double pile-up events in a large-scale LS detector
Commissioning and operation of the cryostat for 3W1 SC wiggler
Hformer: Highly Efficient Vision Transformer for low-dose CT denoising
Hard X-ray focusing resolution and efficiency test with a thickness correction multilayer Laue lens
Picosecond time-resolved X-ray ferromagnetic resonance measurements at Shanghai Synchrotron Radiation Facility

相关作者

暂无数据

相关机构

School of Physical Science and Technology, Guangxi University
Institute of High Energy Physics
School of Physics, Sun Yat-Sen University
Department of Physics and Astronomy, University of California
Institute of High Energy Physics, Chinese Academy of Sciences
0