1.Key Lab of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2.Xi’an Research Institute of High-Technology, Xi’an 710025, China
3.Key Laboratory of Beam Technology (MOE), College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
zcli@tsinghua.edu.cn
Scan for full text
Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations[J]. 核技术(英文版), 2023,34(9):143
Jun-Wei Li, Wei-Min Jia, Chong Liu, et al. Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations[J]. Nuclear Science and Techniques, 2023,34(9):143
Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations[J]. 核技术(英文版), 2023,34(9):143 DOI: 10.1007/s41365-023-01287-z.
Jun-Wei Li, Wei-Min Jia, Chong Liu, et al. Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations[J]. Nuclear Science and Techniques, 2023,34(9):143 DOI: 10.1007/s41365-023-01287-z.
Alloys of uranium and molybdenum are considered as the future of nuclear fuel and defense materials. However, surface corrosion is a fundamental problem in practical applications and storage. In this study, the static and dynamic evolution of carbon monoxide (CO) adsorption and dissociation on γ-U (1 0 0) surface with different Mo doping levels was investigated based on density functional theory and ,ab initio, molecular dynamics. During the static calculation phase, parameters, such as adsorption energy, configuration, and Bader charge, were evaluated at all adsorption sites. Furthermore, the time-dependent behavior of CO molecule adsorption were investigated at the most favorable sites. The minimum energy paths for CO molecular dissociation and atom migration were investigated using the transition state search method. The results demonstrated that the CO on the uranium surface mainly manifests as chemical adsorption before dissociation of the CO molecule. The CO molecule exhibited a tendency to rotate and tilt upright adsorption. However, it is difficult for CO adsorption on the surface in one of the configurations with CO molecule in vertical direction but oxygen (O) is closer to the surface. Bader charge illustrates that the charge transfers from slab atoms to the 2π* antibonding orbital of CO molecule and particularly occurs in carbon (C) atoms. The time is less than 100 fs for the adsorptions that forms embryos with tilt upright in dynamics evolution. The density of states elucidates that the overlapping hybridization of C and O 2,p, orbitals is mainly formed via the ,d, orbitals of uranium and molybdenum (Mo) atoms in the dissociation and re-adsorption of CO molecule. In conclusion, Mo-doping of the surface can decelerate the adsorption and dissociation of CO molecules. A Mo-doped surface, created through ion injection, enhanced the resistance to uranium-induced surface corrosion.
Adsorption and dissociationUraniumCO moleculeDensity functional theoryab-initio molecular dynamics
J.J. Burke, Physical Metallurgy of Uranium Alloys, 3rd edn. (Metals and Ceramics Information Center, Ohio, 1976), pp. 76-79
C.L. Lan, M. Peng, Y. Zhang et al., Geant4 simulation of 238U(n,f) reaction induced by D-T neutron source. Nucl. Sci. Tech. 28, 8 (2016). doi: 10.1007/s41365-016-0158-7http://doi.org/10.1007/s41365-016-0158-7
D.D. Koelling, A.J. Freeman, Relativistic Energy Band Structure and Properties of γ-Uranium. Phys. Rev. B. 7, 4454-4463 (1973). doi: 10.1103/PhysRevB.7.4454http://doi.org/10.1103/PhysRevB.7.4454
J.H. Ye, T. Yu, Efficient and selective extraction of uranium from seawater based on a novel pulsed liquid chromatography radionuclide separation method. Nucl. Sci. Tech. 34, 19 (2023). doi: 10.1007/s41365-023-01180-9http://doi.org/10.1007/s41365-023-01180-9
A. Landa, P. Söderlind, P.A. Turchi, Density-functional study of U–Mo and U–Zr alloy. J. Nucl. Mater. 414, 132-137 (2010). doi: 10.1016/j.jnucmat.2011.02.019http://doi.org/10.1016/j.jnucmat.2011.02.019
S. Bajaj, A. Landa, P. Söderlind et al., The U-Ti system: Strengths and weaknesses of the CALPHAD method. J. Nucl. Mater. 419, 177-185 (2011). doi: 10.1016/j.jnucmat.2011.08.05http://doi.org/10.1016/j.jnucmat.2011.08.05
Z.G. Mei, L Liang, A.M. Yacout, First-principles study of the surface properties of U-Mo system. Comput. Mater. Sci. 142, 355-360 (2018). doi: 10.1016/j.commatsci.2017.10.033http://doi.org/10.1016/j.commatsci.2017.10.033
H.G. Gao, Y.D. Liu, J. Hu et al., A first-principles study on the influences of metal species Al, Zr, Mo and Tc on the mechanical properties of U3Si2. Phys. Chem. Chem. Phys. 22, 1833-1840 (2020). doi: 10.1039/C9CP03814Khttp://doi.org/10.1039/C9CP03814K
S Sen-Britain, A.J. Nelson, Study of cluster ions produced from ToF-SIMS analysis of a U-6%Nb target. Nucl. Instrum. Methods Phys. Res. Sect. B 515, 37-47 (2022). doi: 10.1016/j.nimb.2022.01.010http://doi.org/10.1016/j.nimb.2022.01.010
W. Schmid, S. Dirndorfer, H. Juranowitsch et al., Adhesion strength of sputter deposited diffusion barrier layer coatings for the use in U–Mo nuclear fuels. Nucl. Eng. Des. 276, 115-123 (2014). doi: 10.1016/j.nucengdes.2014.05.025http://doi.org/10.1016/j.nucengdes.2014.05.025
F.G. Di Lemma, J. Burns, J.W. Madden et al., Texture analyses and microstructural evolution in monolithic U-Mo nuclear fuel. J. Nucl. Mater. 544, 152677 (2021). doi: 10.1016/j.jnucmat.2020.152677http://doi.org/10.1016/j.jnucmat.2020.152677
P. Söderlind, O. Eriksson, B. Johansson et al., A unified picture of the crystal structures of metals. Nature 374, 524-525 (1995). doi: 10.1038/374524a0http://doi.org/10.1038/374524a0
F.B.V. Oliveira, D.A. Andrade, Relation between gamma decomposition and powder formation of γ-U8Mo nuclear fuel alloys via hydrogen embrittlement and thermal shock. World J. Nucl. Sci. Technol. 4, 177-188 (2014). doi: 10.4236/wjnst.2014.44023http://doi.org/10.4236/wjnst.2014.44023
E.J. Kautz, S.V. Lambeets, J Royer, et al., Compositional partitioning during early stages of oxidation of a uranium-molybdenum alloy. Scr. Mater. 212, 114528 (2022). doi: 10.1016/j.scriptamat.2022.114528http://doi.org/10.1016/j.scriptamat.2022.114528
A.K. Banos, Investigation of uranium corrosion in mixed water-hydrogen environments. University of Bristol, 2017
K. Asada, K. Ono, K. Yamaguchi et al., Hydrogen absorption properties of uranium alloys. J. Alloys Compd. 231, 780-784 (1995). doi: 10.1016/0925-8388(95)01717-8http://doi.org/10.1016/0925-8388(95)01717-8
Z. Embong, A spectroscopic study of the oxidation of uranium and itsalloy U-6% Nb. University Tun Hussein Onn Malaysia, 2007
W. McLean, C.A. Colmenares, R.L. Smith et al., Electron-spectroscopy studies of clean thorium and uranium surfaces. Chemisorption and initial stages of reaction with O2, CO, and CO2. Phys. Rev. B. 25, 8 (1982). doi: 10.1103/PhysRevB.25.8http://doi.org/10.1103/PhysRevB.25.8
S. Kerisit, E.J. Bylaska, M.S. Massey et al., Ab initio molecular dynamics of uranium incorporated in goethite (α-FeOOH): Interpretation of X-ray absorption spectroscopy of trace polyvalent metals. Inorg. Chem. 55, 11736-11746 (2016). doi: 10.1021/acs.inorgchem.6b01773http://doi.org/10.1021/acs.inorgchem.6b01773
G. Tamborini, SIMS analysis of uranium and actinides in microparticles of different origin. Microchim. Acta. 145, 237-242 (2004). doi: 10.1007/s00604-003-0160-8http://doi.org/10.1007/s00604-003-0160-8
K. Wang, L Jiang, X.X. Ye et al., Absorption effect of pure nickel on the corrosion behaviors of the GH3535 alloy in tellurium vapor. Nucl. Sci. Tech. 32, 140 (2021). doi: 10.1007/s41365-021-00976-xhttp://doi.org/10.1007/s41365-021-00976-x
W.G. Liu, Y Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 82 (2017). doi: 10.1007/s41365-017-0235-6http://doi.org/10.1007/s41365-017-0235-6
M.N. Huda, A.K. Ray, Density functional study of O2 adsorption on (100) surface of γ‐uranium. Int. J. Quantum Chem. 102, 98-105 (2005). doi: 10.1002/qua.20365http://doi.org/10.1002/qua.20365
Z.X. Liu, H.Q. Deng, Q.L. Su et al., Stability and diffusion properties of Ti atom on α-uranium surfaces: A first-principles study. Comput. Mater. Sci. 97, 201-208 (2015). doi: 10.1016/j.commatsci.2014.10.033http://doi.org/10.1016/j.commatsci.2014.10.033
S.Q. Cheng, S.N. Li, J.B. Liu et al., First principles study of H2O adsorption on U2Ti (110) surface. Nucl. Instrum. Methods Phys. Res. Sect. B 457, 63-71 (2019). doi: 10.1016/j.nimb.2019.07.037http://doi.org/10.1016/j.nimb.2019.07.037
X.F. Tian, Y. Wang, L.S. Li et al., First principles studies of oxygen adsorption on the γ-U (1 1 0) surface and influences of Mo doping. Comput. Mater. Sci. 179, 109633 (2020). doi: 10.1016/j.commatsci.2020.109633http://doi.org/10.1016/j.commatsci.2020.109633
J.W. Li, W.M. Jia, S.S. Lü et al., First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Phys. Sin. 71, 226601 (2022). doi: 10.7498/aps.71.20220631http://doi.org/10.7498/aps.71.20220631
G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901-9904 (2000). doi: 10.1063/1.1329672http://doi.org/10.1063/1.1329672
G Kresse, J Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115-13118 (1993). doi: 10.1103/PhysRevB.48.13115http://doi.org/10.1103/PhysRevB.48.13115
G Kresse, J Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). doi: 10.1016/0927-0256(96)00008-0http://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). doi: 10.1103/PhysRevB.59.1758http://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K Burke, M Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1997). doi: 10.1103/PhysRevLett.77.3865http://doi.org/10.1103/PhysRevLett.77.3865
S.K. Xiang, H.C. Huang, L.M Hsiung, Quantum mechanical calculations of uranium phases and niobium defects in γ-uranium. J. Nucl. Mater. 375, 113-119 (2008). doi: 10.1016/j.jnucmat.2007.11.003http://doi.org/10.1016/j.jnucmat.2007.11.003
J. Besson, P.L. Blum, J. Laugier, Sur l'existence d'une transformation directe α→ γ dans l'uranium disperse dans un milieu inerte. J. Nucl. Mater. 16, 74-75 (1965). doi: 10.1016/0022-3115(65)90095-4http://doi.org/10.1016/0022-3115(65)90095-4
G. Schwarz, A. Kley, J. Neugebauer et al., Electronic and structural properties of vacancies on and below the GaP(110) surface. Phys. Rev. B 58, 1392 (1998). doi: 10.1103/PhysRevB.58.1392http://doi.org/10.1103/PhysRevB.58.1392
W.G. Hoover, A.J.C. Ladd, B. Moran, High-strain-rate plastic flow studied via nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818 (1982). doi: 10.1103/PhysRevLett.48.1818http://doi.org/10.1103/PhysRevLett.48.1818
D. J. Evans, Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow. J. Chem. Phys. 78, 3297-3302 (1983). doi: 10.1063/1.445195http://doi.org/10.1063/1.445195
G Li, W.H. Luo, H.C. Chen, CO adsorption on α-U (001) surface. Acta Phys. Chim. Sin. 26, 1378-1384 (2010). doi: 10.3866/PKU.WHXB20100523http://doi.org/10.3866/PKU.WHXB20100523
S.S. Sung, R. Hoffmann, How carbon monoxide bonds to metal surfaces. J. Am. Chem. Soc. 107, 578-584 (1985). doi: 10.1021/ja00289a009http://doi.org/10.1021/ja00289a009
A.E. Austin, Carbon positions in uranium carbides. Acta Crystallogr. 12, 159-161 (1959). doi: 10.1107/S0365110X59000445http://doi.org/10.1107/S0365110X59000445
Y.F. Ge, S. Hao, K. Bao et al., A novel hard superconductor obtained in di-molybdenum carbide (Mo2C) with Mo–C octahedral structure. J. Alloys Compd. 881, 160631 (2021). doi: 10.1016/j.jallcom.2021.160631http://doi.org/10.1016/j.jallcom.2021.160631
S.A. Barrett, A.J. Jacobson, B.C. Tofield et al., The Preparation and Structure of Barium Uranium Oxide BaUO3+x. Acta Crystallogr. Sect. B 38, 2775-2781 (1982). doi: 10.1107/S0567740882009935http://doi.org/10.1107/S0567740882009935
S. Maintz, V.L. Deringer, A.L. Tchougréeff et al., LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030-1035 (2016). doi: 10.1002/jcc.24300http://doi.org/10.1002/jcc.24300
R. Nelson, C. Ertural, J. George et al., LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory. J. Comput. Chem. 41, 1931-1940 (2020). doi: 10.1002/jcc.26353http://doi.org/10.1002/jcc.26353
V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal Orbital Hamilton Population (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 115, 5461-5466 (2011). doi: 10.1021/jp202489shttp://doi.org/10.1021/jp202489s
G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354-360 (2006). doi: 10.1016/j.commatsci.2005.04.010http://doi.org/10.1016/j.commatsci.2005.04.010
K. Momma, F. Izumi, VESTA: a three‐dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653-658 (2008). doi: 10.1107/S0021889808012016http://doi.org/10.1107/S0021889808012016
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构