Your Location:
Home >
Browse articles >
Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis
NUCLEAR ELECTRONICS AND INSTRUMENTATION | Updated:2023-10-13
    • Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis

    • Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis

    • 核技术(英文版)   2023年34卷第9期 文章编号:138
    • DOI:10.1007/s41365-023-01288-y    

      中图分类号:

    Scan for full text

  • Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis[J]. 核技术(英文版), 2023,34(9):138 DOI: 10.1007/s41365-023-01288-y.

    Ashraf Aboshosha, Hisham A. Hamad. Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis[J]. Nuclear Science and Techniques, 2023,34(9):138 DOI: 10.1007/s41365-023-01288-y.

  •  

0

浏览量

0

Downloads

0

CSCD

文章被引用时,请邮件提醒。
Submit
工具集
下载
参考文献导出
分享
收藏
添加至我的专辑

相关文章

Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics
Predictions of nuclear charge radii based on the convolutional neural network
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and bayesian inference
Nuclear mass based on the multi-task learning neural network method
Enhanced graph-based fault diagnostic system for nuclear power plants

相关作者

暂无数据

相关机构

Paris Elite Institute of Technology, Shanghai Jiao Tong University
School of Mathdematics, Sichuan University
Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University
School of Physics and Optoelectronics Engineering, Anhui University
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University
0