1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Wuwei Institute of New Energy, Wuwei 733000, China
lijihao@sinap.ac.cn (Jihao Li)
* lilinfan@sinap.ac.cn (Linfan Li);
Scan for full text
Preparation of antibacterial non-woven AgNCs@PP-g-PAA via radiation method[J]. 核技术(英文版), 2023,34(9):132
Fei Han, Wen-Rui Wang, Dan-Yi Li, et al. Preparation of antibacterial non-woven AgNCs@PP-g-PAA via radiation method[J]. Nuclear Science and Techniques, 2023,34(9):132
Preparation of antibacterial non-woven AgNCs@PP-g-PAA via radiation method[J]. 核技术(英文版), 2023,34(9):132 DOI: 10.1007/s41365-023-01292-2.
Fei Han, Wen-Rui Wang, Dan-Yi Li, et al. Preparation of antibacterial non-woven AgNCs@PP-g-PAA via radiation method[J]. Nuclear Science and Techniques, 2023,34(9):132 DOI: 10.1007/s41365-023-01292-2.
With the growing threat of airborne epidemics, there has been an increasing emphasis on personal protection. Masks serve as our primary external defense against bacteria and viruses that might enter the respiratory tract. Hence, it's crucial to develop a polypropylene (PP) nonwoven fabric with quick antibacterial capabilities as a key component for masks. This study introduces silver nanoclusters (AgNCs) into non-woven PP using radiation technology to infuse antibacterial properties. Initially, a solid ligand (PP-g-PAA) was procured via radiation grafting of the ligand polyacrylic acid (PAA), which was incorporated into the nonwoven PP with the aid of a crosslinking agent at a lower absorbed dosage. Subsequently, AgNCs were synthesized in situ on PP-g-PAA via an interaction between PAA and AgNCs, leading directly to the formation of AgNCs@PP-g-PAA composites. Owing to the hydrophilicity of PAA, AgNCs@PP-g-PAA maintains good moisture permeability even when the voids are heavily saturated with PAA gel, preventing droplet aggregation by diffusing droplets on the surface of the material. This feature enhances the comfort of the masks. Most importantly, due to the incorporation of AgNCs, AgNCs@PP-g-PAA demonstrates outstanding antibacterial effects against ,E. coli, and ,S. aureus, nearly achieving an instant "touch and kill" outcome. In conclusion, we synthesized a modified nonwoven fabric with significant antibacterial activity using a simple synthetic route, offering a promising material that provides improved personal protection.
Silver nanoclustersRadiation technologyAntibacterial
E. Ding, D. D. Zhang and P. M. Bluyssen, Ventilation regimes of school classrooms against airborne transmission of infectious respiratory droplets: A review. Build. Environ. 207, 11 (2022). doi: 10.1016/j.buildenv.2021.108484http://doi.org/10.1016/j.buildenv.2021.108484
A. La, Q. Zhang, N. Cicek et al., Current understanding of the airborne transmission of important viral animal pathogens in spreading disease. Biosyst. Eng. 224, 92-117 (2022). doi: 10.1016/j.biosystemseng.2022.09.013http://doi.org/10.1016/j.biosystemseng.2022.09.013
S.-H. Kim, S. Y. Chang, M. Sung et al., Extensive viable middle east respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards. Clinical Infectious Diseases. 63, 363-369 (2016). doi: 10.1093/cid/ciw239http://doi.org/10.1093/cid/ciw239
W. G. Lindsley, F. M. Blachere, R. E. Thewlis et al., Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs. PLoS One 5, 6 (2010). doi: 10.1371/journal.pone.0015100http://doi.org/10.1371/journal.pone.0015100
I. T. S. Yu, Y. G. Li, T. W. Wong et al., Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 350, 1731-1739 (2004). doi: 10.1056/NEJMoa032867http://doi.org/10.1056/NEJMoa032867
C. C. Leung, T. H. Lam and K. K. Cheng, Mass masking in the COVID-19 epidemic: people need guidance. Lancet. 395, 945-945 (2020). doi: 10.1016/s0140-6736(20)30520-1http://doi.org/10.1016/s0140-6736(20)30520-1
R. A. Addi, A. Benksim and M. Cherkaoui, Easybreath Decathlon Mask: An Efficient Personal Protective Equipment (PPE) against COVID-19 in Africa. Journal of Clinical and Experimental Investigations. 11, 738 (2020). doi: 10.5799/jcei/7894http://doi.org/10.5799/jcei/7894
Z. P. Liu, Z. Q. Wang, Y. Meng et al., Electron beam irradiation grafting of metal-organic frameworks onto cotton to prepare antimicrobial textiles. Rsc Adv. 13, 1853-1861 (2023). doi: 10.1039/d2ra07144dhttp://doi.org/10.1039/d2ra07144d
K. Zheng, M. I. Setyawati, D. T. Leong et al., Antimicrobial silver nanomaterials. Coordination Chemistry Reviews. 357, 1-17 (2018). doi: 10.1016/j.ccr.2017.11.019http://doi.org/10.1016/j.ccr.2017.11.019
Q. Q. Guo, Y. Zhao, X. M. Dai et al., Functional silver nanocomposites as broad-spectrum antimicrobial and biofilm-disrupting agents. ACS Appl. Mater Inter. 9, 16835-16848 (2017). doi: 10.1021/acsami.7b02775http://doi.org/10.1021/acsami.7b02775
B. Khodashenas and H. R. Ghorbani, Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 12, 1823-1838 (2019). doi: 10.1016/j.arabjc.2014.12.014http://doi.org/10.1016/j.arabjc.2014.12.014
Y. Kim, B. G. Lee and Y. Roh, Microbial synthesis of silver nanoparticles. J. Nanosci. Nanotechno. 13, 3897-3900 (2013). doi: 10.1166/jnn.2013.7011http://doi.org/10.1166/jnn.2013.7011
Z. Zhong, H. Lu and T. B. Ren, Shape Control Synthesis of Silver Nanoparticles and Silver Polymeric Nanocomposites. Prog. Chem. 26, 1930-1941 (2014). doi: 10.7536/pc140646http://doi.org/10.7536/pc140646
K. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan et al., Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135-140 (2010). doi: 10.1016/j.arabjc.2010.04.008http://doi.org/10.1016/j.arabjc.2010.04.008
E. Ferrando-Magraner, C. Bellot-Arcis, V. Paredes-Gallardo et al., Antibacterial properties of nanoparticles in dental restorative materials. A systematic review and meta-analysis. Med. Lith. 56, 22 (2020). doi: 10.3390/medicina56020055http://doi.org/10.3390/medicina56020055
Y. J. Xu, S. S. Li, X. P. Yue et al., Review of silver nanoparticles (AgNPs)-cellulose antibacterial composites. Bioresources 13, 2150-2170 (2018). doi: 10.15376/biores.13.1.Xuhttp://doi.org/10.15376/biores.13.1.Xu
M. J. Chen, R. M. Li, X. L. Shu et al., Silver-loaded delaminated hectorite nanoparticles for antibacterial materials. Micro Nano Lett. 14, 531-533 (2019). doi: 10.1049/mnl.2018.5017http://doi.org/10.1049/mnl.2018.5017
O. Borhan, A. Muresan, C. D. Radu et al., Silver nanoparticles used to obtain cellulosic materials with antibacterial properties. Rev. Chim. 66, 1796-1801 (2015).
I. Diez and R. H. A. Ras, Fluorescent silver nanoclusters. Nanoscale. 3, 1963-1970 (2011). doi: 10.1039/c1nr00006chttp://doi.org/10.1039/c1nr00006c
Q. Q. Guo, J. G. Li, T. K. Chen et al., Antimicrobial thin-film composite membranes with chemically decorated ultrasmall silver nanoclusters. Acs Sustainable Chemistry Engineering. 7, 14848-14855 (2019). doi: 10.1021/acssuschemeng.9b02929http://doi.org/10.1021/acssuschemeng.9b02929
X. Wang, W. Gao, W. Xu et al., Fluorescent Ag nanoclusters templated by carboxymethyl-β-cyclodextrin (CM-β-CD) and their in vitro antimicrobial activity. Materials Science and Engineering: C. 33, 656-662 (2013). doi: 10.1016/j.msec.2012.10.012http://doi.org/10.1016/j.msec.2012.10.012
X. Liu, Z. H. Cheng, H. Wen et al., Hybrids of upconversion nanoparticles and silver nanoclusters ensure superior bactericidal capability via combined sterilization. Acs Appl. Mater. Inter. 12, 51285-51292 (2020). doi: 10.1021/acsami.0c15710http://doi.org/10.1021/acsami.0c15710
T. Y. Wang, Y. X. Li, Y. N. Liu et al., Highly biocompatible Ag nanocluster-reinforced wound dressing with long-term and synergistic bactericidal activity. Journal of Colloid and Interface Science. 633, 851-865 (2023). doi: 10.1016/j.jcis.2022.11.139http://doi.org/10.1016/j.jcis.2022.11.139
C.-c. Wang, F.-l. Yang, L.-F. Liu et al., Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes. J Membrane Sci. 345, 223-232 (2009). doi: 10.1016/j.memsci.2009.09.002http://doi.org/10.1016/j.memsci.2009.09.002
S. W. Xiong, P. G. Fu, Q. Zou et al., Heat Conduction and Antibacterial Hexagonal Boron Nitride/Polypropylene Nanocomposite Fibrous Membranes for Face Masks with Long-Time Wearing Performance. Acs Appl. Mater. Inter. 13, 196-206 (2021). doi: 10.1021/acsami.0c17800http://doi.org/10.1021/acsami.0c17800
E. Fakoori and H. Karami, Preparation and characterization of ZnO-PP nanocomposite fibers and non-woven fabrics. J. Text. Inst. 109, 1152-1158 (2018). doi: 10.1080/00405000.2017.1417681http://doi.org/10.1080/00405000.2017.1417681
J. Y. Gong, Z. Fu, S. J. Zhou et al., A facile strategy for rapid in situ synthesis of Cu2O on PP non-woven fabric with durable antibacterial activities. Compos. Commun. 34, 6 (2022). doi: 10.1016/j.coco.2022.101271http://doi.org/10.1016/j.coco.2022.101271
G.-G. Luo, Q.-L. Guo, Z. Wang et al., New protective ligands for atomically precise silver nanoclusters. Dalton Transactions. 49, 5406-5415 (2020). doi: 10.1039/D0DT00477Dhttp://doi.org/10.1039/D0DT00477D
Y. de Rancourt, B. Couturaud, A. Mas et al., Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene. Journal of Colloid and Interface Science. 402, 320-326 (2013). doi: 10.1016/j.jcis.2013.03.031http://doi.org/10.1016/j.jcis.2013.03.031
T. R. Dargaville, G. A. George, D. J. T. Hill et al., High energy radiation grafting of fluoropolymers. Prog Polym Sci. 28, 1355-1376 (2003). doi: 10.1016/s0079-6700(03)00047-9http://doi.org/10.1016/s0079-6700(03)00047-9
J. F. Du, Z. Dong, C. Xie et al., Application of radiation grafting technique in preparation of adsorption materials. Acta Polym. Sin. 698-705 (2016). doi: 10.11777/j.issn1000-3304.2016.15364http://doi.org/10.11777/j.issn1000-3304.2016.15364
S. A. Gursel, L. Gubler, B. Gupta et al., Radiation Grafted Membranes. Berlin. 215, 157-217 (2008). doi: 10.1007/12_2008_153http://doi.org/10.1007/12_2008_153
X. Zheng, X. J. Ding, J. P. Guan et al., Ionic liquid-grafted polyamide 6 by radiation-induced grafting: New strategy to prepare covalently bonded ion-containing polymers and their application as functional fibers. ACS Appl. Mater. Inter. 11, 5462-5475 (2019). doi: 10.1021/acsami.8b21704http://doi.org/10.1021/acsami.8b21704
M. Grasselli and E. E. Smolko, Designing protein adsorptive materials by simultaneous radiation-induced grafting polymerization: A review. Radiat. Phys. Chem. 194, 10 (2022). doi: 10.1016/j.radphyschem.2022.110055http://doi.org/10.1016/j.radphyschem.2022.110055
X. L. Miao, J. H. Li, Q. Xiang et al., Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries. Nucl. Sci. Tech. 28, 7 (2017). doi: 10.1007/s41365-017-0226-7http://doi.org/10.1007/s41365-017-0226-7
R. Torkaman, F. Maleki, M. Gholami et al., Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review. Journal of Water Process Engineering. 44, 26 (2021). doi: 10.1016/j.jwpe.2021.102371http://doi.org/10.1016/j.jwpe.2021.102371
M. L. Lu, J. H. Li, L. F. Li et al., Fabrication of ultralight 3D graphene/Pt aerogel via in situ gamma-ray irradiation and its application for the catalytic degradation of methyl orange. Fuller Nanotub Car N. 28, 425-434 (2020). doi: 10.1080/1536383x.2019.1695602http://doi.org/10.1080/1536383x.2019.1695602
M. L. Lu, J. H. Li, S. Z. Song et al., The synthesis of 3D graphene/Au composites via gamma-ray irradiation and their use for catalytic reduction of 4-nitrophenol. Nanotechnology. 31, 9 (2020). doi: 10.1088/1361-6528/ab7aa5http://doi.org/10.1088/1361-6528/ab7aa5
Z. Zhang, X. L. Cui, W. Yuan et al., Encapsulating surface-clean metal nanoparticles inside metal-organic frameworks for enhanced catalysis using a novel gamma-ray radiation approach. Inorg. Chem. Front. 5, 29-38 (2018). doi: 10.1039/c7qi00577fhttp://doi.org/10.1039/c7qi00577f
X. Q. Zhang, R. F. Shen, X. J. Guo et al., Bimetallic Ag-Cu nanoparticles anchored on polypropylene (PP) nonwoven fabrics: Superb catalytic efficiency and stability in 4-nitrophenol reduction. Chemical Engineering Journal. 408, 12 (2021). doi: 10.1016/j.cej.2020.128018http://doi.org/10.1016/j.cej.2020.128018
F. Han, J. Li, W. Wang et al., Synthesis of silver nanoclusters by irradiation reduction and detection of Cr3+ ions. Rsc Adv. 12, 33207-33214 (2022). doi: 10.1039/D2RA06536Chttp://doi.org/10.1039/D2RA06536C
F. Han, W. Wang, D. Li et al., Green preparation of silver nanocluster composite AgNCs@CF-g-PAA and its application: 4-NP catalytic reduction and hydrogen production. Rsc Adv. 13, 11807-11816 (2023). doi: 10.1039/D3RA01245Jhttp://doi.org/10.1039/D3RA01245J
F. Han, W. R. Wang, D. Y. Li et al., Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+. Nucl. Sci. Tech. 34, 11 (2023). doi: 10.1007/s41365-023-01224-0http://doi.org/10.1007/s41365-023-01224-0
HAN Fei, WANG wenrui, LI Danyi et al., Preparation and properties of Ag nanocluster composites by radiation method. Nuclear Techniques 46, 050202 (2023). doi: 10.11889/j.0253-3219.2023.hjs.46.050202http://doi.org/10.11889/j.0253-3219.2023.hjs.46.050202 (in Chinese)
R. S. G. Romano, W. L. Oliani, D. F. Parra et al., Accelerated environmental degradation of gamma irradiated polypropylene and thermal analysis. J. Therm. Anal. Calorim. 131, 823-828 (2018). doi: 10.1007/s10973-017-6653-1http://doi.org/10.1007/s10973-017-6653-1
A. E. Chalykh, V. A. Tverskoy, A. D. Aliev et al., Mechanism of post-radiation-chemical graft polymerization of styrene in polyethylene. Polymers-Basel. 13, 18 (2021). doi: 10.3390/polym13152512http://doi.org/10.3390/polym13152512
Y. Hirata, S. Tabata and J. Ideue, Interactions in the silicon carbide-polyacrylic acid-yttrium ion system. J. Am. Ceram. Soc. 86, 5-11 (2003). doi: 10.1111/j.1151-2916.2003.tb03269.xhttp://doi.org/10.1111/j.1151-2916.2003.tb03269.x
Y. Sun, T. Zhao, C. Zhang et al., Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+,Cu2+,Cd2+. Journal of Beijing Forestry University. 39, 102-111 (2017). doi: 10.13332/j.1000-1522.20170309http://doi.org/10.13332/j.1000-1522.20170309 (in Chinese)
U. Nakan, S. Bieerkehazhi, B. Tolkyn et al., Synthesis, Characterization and antibacterial application of copolymers based on N,N-Dimethyl Acrylamide and Acrylic Acid. Materials (Basel, Switzerland). 14, 6191 (2021). doi: 10.3390/ma14206191http://doi.org/10.3390/ma14206191
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构