1.School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
2.Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing 102206, China
3.China Institute of Nuclear Industry Strategy, Beijing, China
4.Nuclear and Radiation Safety Center, MEE, Beijing 100082, China
5.Department of Nuclear Engineering, Oregon State University, Corvallis, OR 97331, USA
* lixiangbin@ncepu.edu.cn
Scan for full text
Dynamic scaling characteristics of single-phase natural circulation based on different strain transformations[J]. 核技术(英文版), 2023,34(9):142
Jia-Ning Xu, Xiang-Bin Li, Zhong-Yi Wang, et al. Dynamic scaling characteristics of single-phase natural circulation based on different strain transformations[J]. Nuclear Science and Techniques, 2023,34(9):142
Dynamic scaling characteristics of single-phase natural circulation based on different strain transformations[J]. 核技术(英文版), 2023,34(9):142 DOI: 10.1007/s41365-023-01296-y.
Jia-Ning Xu, Xiang-Bin Li, Zhong-Yi Wang, et al. Dynamic scaling characteristics of single-phase natural circulation based on different strain transformations[J]. Nuclear Science and Techniques, 2023,34(9):142 DOI: 10.1007/s41365-023-01296-y.
To understand the dynamical system scaling (DSS) analysis theory, the applicability of DSS β- and ω-strain transformation methods for the scaling analysis of complex loops was explored. A simplified model consisting of two loops was established based on the primary and secondary sides of a nuclear reactor, and β- and ω-strain transformation methods were used to analyze the single-phase natural circulation in the primary circuit. For comparison with the traditional method, simplified DSS β- and ω-strain methods were developed based on the standard scaling criterion. The strain parameters in these four methods were modified to form multiple groups of scaled-down cases. The transient process of the natural circulation was simulated using the Relap5 code, and the variation in the dynamic flow characteristics with the strain numbers was obtained using different scaling methods. The results show that both the simplified and standard DSS methods can simulate the dynamic characteristics of natural circulation in the primary circuit. The scaled-down cases in the simplified method exhibit the same geometric scaling and correspond to small core power ratios. By contrast, different scaled-down cases in the standard DSS method correspond to different geometric scaling criteria and require more power. The dynamic process of natural circulation can be simulated more accurately using the standard DSS method.
Dynamical system scaling analysisβ-strain transformationω-strain transformationNatural circulation
C. Deng, X. Zhang, Y. Yang et al., Research on scaling design and applicability evaluation of integral thermal-hydraulic test facilities: A review. Ann. Nucl. Energy 131, 273-290 (2019). doi: 10.1016/j.anucene.2019.03.042http://doi.org/10.1016/j.anucene.2019.03.042
AD. Crécy, P. Bazin, H. Glaeser et al., Uncertainty and sensitivity analysis of the LOFT L2-5 test: Results of the BEMUSE programme. Nucl. Eng. Des. 238, 3561-3578 (2008). doi: 10.1016/j.nucengdes.2008.06.004http://doi.org/10.1016/j.nucengdes.2008.06.004
S. M. Modro, P. North, T. H. Chen, LOFT small break experiments. Nucl. Eng. Des. 102, 143-150 (1987). doi: 10.1016/0029-5493(87)90246-9http://doi.org/10.1016/0029-5493(87)90246-9
H. J. Yoon, S. T. Revankar, Y. Xu et al., Design and test of hydraulic vacuum breaker check valve for simplified boiling water reactor. Nucl. Eng. Des. 236, 2405-2410 (2006). doi: 10.1016/j.nucengdes.2006.02.013http://doi.org/10.1016/j.nucengdes.2006.02.013
M. Ishii, S. T. Revankar, T. Leonardi et al., The three-level scaling approach with application to the Purdue University Multi-Dimensional Integral Test Assembly (PUMA). Nucl. Eng. Des. 186, 177-211 (1998). doi: 10.1016/S0029-5493(98)00222-2http://doi.org/10.1016/S0029-5493(98)00222-2
S. Kuran, Y. Xu, X. Sun et al., Startup transient simulation for natural circulation boiling water reactors in PUMA facility. Nucl. Eng. Des. 236, 2365-2375 (2006). doi: 10.1016/j.nucengdes.2005.11.002http://doi.org/10.1016/j.nucengdes.2005.11.002
M. T. Friend, R. F. Wright, R. Hundal et al., Simulated AP600 Response to Small-Break Loss-of-Coolant-Accident and Non-Loss-of-Coolant-Accident Events: Analysis of SPES-2 Integral Test Results. Nucl. Technol. 122, 19-42 (1998). doi: 10.13182/NT98-A2848http://doi.org/10.13182/NT98-A2848
Y. Q. Li, H. J. Cheng, Z. S. Ye et al., Analyses of ACME integral test results on CAP1400 small-break loss of-coolant-accident transient. Prog. Nucl. Energ. 88, 375-397 (2016). doi: 10.1016/j.pnucene.2016.01.012http://doi.org/10.1016/j.pnucene.2016.01.012
Y. S. Liu, S. C. Tan, J. P. Jing et al., Investigation on natural circulation phenomena of LOCA with PRHR, pipeline break in ACME facility. Nuclear Techniques 46, 060601 (2023). doi: 10.11889/j.0253-3219.2023.hjs.46.060601http://doi.org/10.11889/j.0253-3219.2023.hjs.46.060601. (in Chinese)
Y. Y. Hsu, Z. Y. Wang, C. Unal et al., Scaling-modeling for small break LOCA test facilities. Nucl. Eng. Des. 122, 175-194 (1990). doi: 10.1016/0029-5493(90)90205-Chttp://doi.org/10.1016/0029-5493(90)90205-C
S. M. Modro, S. N. Aksan, V. T. Berta et al., Review of LOFT (Loss-of-Fluid Test) large break experiments. (1989). doi: 10.2172/5497189http://doi.org/10.2172/5497189
D. Paladino, O. Auban, M. Huggenberger et al., A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS). Nucl. Eng. Des. 241, 4551-4561 (2011). doi: 10.1016/j.nucengdes.2010.11.022http://doi.org/10.1016/j.nucengdes.2010.11.022
N. Zuber, G. E. Wilson, M. Ishii et al., An integrated structure and scaling methodology for severe accident technical issue resolution: Development of methodology. Nucl. Eng. Des. 186, 1-21 (1998). doi: 10.1016/S0029-5493(98)00215-5http://doi.org/10.1016/S0029-5493(98)00215-5
C. Frepoli., Scaling Analysis of Thermal-Hydraulic Integral Systems: Insights from Practical Applications and Recent Advancements. Nucl. Sci. Eng. 194, 825-832 (2020). doi: 10.1080/00295639.2020.1753419http://doi.org/10.1080/00295639.2020.1753419
G. E. Wilson, B. E. Boyack., The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis. Nucl. Eng. Des. 186, 23-37 (1998). doi: 10.1016/S0029-5493(98)00216-7http://doi.org/10.1016/S0029-5493(98)00216-7
R. G. Hanson, G. E. Wilson, M. G. Ortiz et al., Development of a phenomena identification and ranking table (PIRT) for a postulated double-ended guillotine break in a production reactor. Nucl. Eng. Des. 136, 335-346 (1992). doi: 10.1016/0029-5493(92)90032-Qhttp://doi.org/10.1016/0029-5493(92)90032-Q
C. Deng, H. Chang, B. Qin et al., Stored energy analysis in the scaled-down test facilities. Ann. Nucl. Energy 96, 19-25 (2016). doi: 10.1016/j.anucene.2016.05.018http://doi.org/10.1016/j.anucene.2016.05.018
J. N. Reyes, L. Hochreiter., Scaling analysis for the OSU AP600 test facility (APEX). Nucl. Eng. Des. 186, 53-109 (1998). doi: 10.1016/S0029-5493(98)00218-0http://doi.org/10.1016/S0029-5493(98)00218-0
M. Ishii, I. Kataoka., Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation. Nucl. Eng. Des. 81, 411-425. (1984) doi: 10.1016/0029-5493(84)90287-5http://doi.org/10.1016/0029-5493(84)90287-5
M. Ishii, O. C. Jones., Derivation and application of scaling criteria for two-phase flows. Two-phase Flows and Heat Transfer Proc. Vol. 1 (1976), p.163.
M. Ishii, N. Zuber., Thermally induced flow instability in two phase mixtures. Heat Transfer Conf. B5. 11. (1970).
D. Lu, Z. Xiao, B Chen. Investigation on scaling law for reactor natural circulation under motion conditions. Ann. Nucl. Energy 37, 691-700 (2010). doi: 10.1016/j.anucene.2010.02.002http://doi.org/10.1016/j.anucene.2010.02.002
D. Lu, Z. Xiao, B. Chen., A new method to derive one set of scaling criteria for reactor natural circulation at single and two-phase conditions. Nucl. Eng. Des. 240, 3851-3861 (2010). doi: 10.1016/j.nucengdes.2010.08.012http://doi.org/10.1016/j.nucengdes.2010.08.012
W. S. Duan, Z. R. Zou, X. Luo et al., Startup scheme optimization and flow instability of natural circulation lead-cooled fast reactor SNCLFR-100. Nucl. Sci. Tech. 32, 133 (2021). doi: 10.1007/s41365-021-00970-3http://doi.org/10.1007/s41365-021-00970-3.
Q. Y. Yu, J. W. Qi, P. C. Zhao et al., Uncertainty analysis of unprotected transient overpower of small natural circulation lead-bismuth cooled fast reactor. Nuclear Techniques 45, 080604 (2022). doi: 10.11889/j.0253-3219.2022.hjs.45.080604http://doi.org/10.11889/j.0253-3219.2022.hjs.45.080604 (in Chinese)
D. N. Basu, S. Bhattacharyya, P. K. Das., Dynamic response of a single-phase rectangular natural circulation loop to different excitations of input power. Int. J. Heat. Mass. Tran. 65, 131-142 (2013). doi: 10.1016/j.ijheatmasstransfer.2013.06.006http://doi.org/10.1016/j.ijheatmasstransfer.2013.06.006
S. P. Lakshmanan, M. Pandey, P. P. Kumar et al., Study of startup transients and power ramping of natural circulation boiling systems. Nucl. Eng. Des. 239, 1076-1083 (2009). doi: 10.1016/j.nucengdes.2009.01.002http://doi.org/10.1016/j.nucengdes.2009.01.002
N. Zuber, U. S. Rohatgi, W. Wulff et al., Application of fractional scaling analysis (FSA) to loss of coolant accidents (LOCA). Nucl. Eng. Des. 237, 1593-1607 (2007). doi: 10.1016/j.nucengdes.2007.01.017http://doi.org/10.1016/j.nucengdes.2007.01.017
M. Dzodzo, F. Oriolo, W. Ambrosini et al., Application of Fractional Scaling Analysis for Development and Design of Integral Effects Test Facility. Journal of Nuclear Engineering and Radiation Science. ASME J of Nuclear Rad Sci. 5, 041208 (2019). doi: 10.1115/1.4042496http://doi.org/10.1115/1.4042496
J. Reyes, The dynamical system scaling methodology, in Proceeding of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), (2015)
X. B. Li, N. Li et al., Application of dynamical system scaling method on simple gravity-driven draining process. J. Nucl. Sci. Technol. 55, 11-18 (2017). doi: 10.1080/00223131.2017.1372231http://doi.org/10.1080/00223131.2017.1372231
X. B. Li, H. Y. Li, N. Li et al., DSS application on single-phase natural circulation in a simple rectangular loop. Ann. Nucl. Energy 119, 214-228 (2018). doi: 10.1016/j.anucene.2018.05.004http://doi.org/10.1016/j.anucene.2018.05.004
J. N. Xu, X. B. Li, Y. S. Liu et al., Two-parameter dynamical scaling analysis of single-phase natural circulation in a simple rectangular loop based on dilation transformation. Nucl. Sci. Tech. 33, 156 (2022). doi: 10.1007/s41365-022-01138-3http://doi.org/10.1007/s41365-022-01138-3.
Z. Liu, Y. Guo, H. Bao et al., The dynamical system scaling analysis for single-phase integral test facilities. Ann. Nucl. Energy 165, 108682 (2022). doi: 10.1016/j.anucene.2021.108682http://doi.org/10.1016/j.anucene.2021.108682
R. Yoshiura, A. Duenas, A. Epiney., Dynamical system scaling of a thermocline thermal storage system in the Thermal Energy Distribution System (TEDS) Facility. Energies. 15, 4265 (2022). doi: 10.3390/en15124265http://doi.org/10.3390/en15124265
J. H. Song., Performance and scaling analysis for a two-phase natural circulation loop. Int. Commun. Heat. Mass. 35, 1084-1090 (2008). doi: 10.1016/j.icheatmasstransfer.2008.07.009http://doi.org/10.1016/j.icheatmasstransfer.2008.07.009
P. K. Vijayan, H. Austregesilo., Scaling laws for single-phase natural circulation loops. Nucl. Eng. Des. 152, 331-347 (1994). doi: 10.1016/0029-5493(94)90095-7http://doi.org/10.1016/0029-5493(94)90095-7
X. Li, H. Li, Y. Liu et al., Numerical scaling assessment on natural circulation in Core Makeup Tank. Ann. Nucl. Energy 140, 107105 (2020). doi: 10.1016/j.anucene.2019.107105http://doi.org/10.1016/j.anucene.2019.107105
G. L. Li, X. L. Fu, Q. L. Wen et al., Experimental and Numerical Investigation of Natural Circulation Characteristics of Multi-coupled Systems. Nucl. Sci. Eng. 38, 8 (2018). doi: 10.3969/j.issn.0258-0918.2018.03.010http://doi.org/10.3969/j.issn.0258-0918.2018.03.010 (in Chinese)
X. B. Li, B. T. Zhan, Y. Z. Wang et al., Dynamic Scaling Characteristics on Natural Circulation in Simplified Reactor Primary Loop System. Atomic Energy Science and Technology. 55, 1386-1394 (2021). doi: 10.7538/yzk.2020.youxian.0615http://doi.org/10.7538/yzk.2020.youxian.0615 (in Chinese)
Q. Y. Yu, H. Xiao, Z. J. Liu et al., A coolant suitable for small long life natural circulation lead-based fast reactor. Nuclear Techniques 45, 030601 (2022). doi: 10.11889/j.0253-3219.2022.hjs.45.030601http://doi.org/10.11889/j.0253-3219.2022.hjs.45.030601. (in Chinese)
G. L. Xia, Y. Guo, M. J. Peng., Investigation on Two-Phase Flow Instability in Parallel Channels Based on RELAP5 Code. Atomic Energy Science and Technology. 44, 7 (2010). (in Chinese)
R. Urbonas, E. Uspuras, A. Kaliatka., State-of-the-art computer code RELAP5 validation with RBMK-related separate phenomena data. Nucl. Eng. Des. 225, 65-81 (2003). doi: 10.1016/S0029-5493(03)00150-Xhttp://doi.org/10.1016/S0029-5493(03)00150-X
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构