1.College of Physics, Jilin University, Changchun 130012, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
† jianli@jlu.edu.cn
‡ dlfang@impcas.ac.cn
Scan for full text
Calculation of microscopic nuclear level densities based on covariant density functional theory[J]. 核技术(英文版), 2023,34(9):141
Kun-Peng Geng, Peng-Xiang Du, Jian Li, et al. Calculation of microscopic nuclear level densities based on covariant density functional theory[J]. Nuclear Science and Techniques, 2023,34(9):141
Calculation of microscopic nuclear level densities based on covariant density functional theory[J]. 核技术(英文版), 2023,34(9):141 DOI: 10.1007/s41365-023-01298-w.
Kun-Peng Geng, Peng-Xiang Du, Jian Li, et al. Calculation of microscopic nuclear level densities based on covariant density functional theory[J]. Nuclear Science and Techniques, 2023,34(9):141 DOI: 10.1007/s41365-023-01298-w.
In this study, a microscopic method for calculating the nuclear level density (NLD) based on the covariant density functional theory (CDFT) is developed. The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT, and the level densities are then obtained by considering collective effects such as vibration and rotation. Our results are compared with those of other NLD models, including phenomenological, microstatistical and non-relativistic Hartree–Fock–Bogoliubov combinatorial models. This comparison suggests that the general trends among these models are essentially the same, except for some deviations among the different NLD models. In addition, the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data, including the observed cumulative number of levels at low excitation energies and the measured NLDs. The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
Nuclear level densityCovariant density functional theoryCombinatorial method
H.A. Bethe, R.F. Bacher, Nuclear physics A. Stationary states of nuclei. Rev. Mod. Phys. 8, 82-229 (1936). doi: 10.1103/RevModPhys.8.82http://doi.org/10.1103/RevModPhys.8.82
P. Möller, A. Sierk, T. Ichikawa et al., Nuclear ground-state masses and deformations: Frdm (2012). At. Data Nucl. Data Tables 109–110, 1-204 (2016). doi: 10.1016/j.adt.2015.10.002http://doi.org/10.1016/j.adt.2015.10.002
H.A. Bethe, Nuclear physics B. Nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69-244 (1937). doi: 10.1103/RevModPhys.9.69http://doi.org/10.1103/RevModPhys.9.69
C. Yalcin, The cross-section calculation of 112Sn(α,γ)116Te reaction with different nuclear models at the astrophysical energy range. Nucl. Sci. Tech 28, 113 (2017). doi: 10.1007/s41365-017-0267-yhttp://doi.org/10.1007/s41365-017-0267-y
J.H. Luo, J.C. Liang, L. Jiang et al., Measurement of 134xe(n,2n)133m, gxe reaction cross sections in 14-mev region with detailed uncertainty quantification. Nucl. Sci. Tech. 34, 4 (2023). doi: 10.1007/s41365-022-01158-zhttp://doi.org/10.1007/s41365-022-01158-z
P.H. Chen, H. Wu, Z.X. Yang et al., Prediction of synthesis cross sections of new moscovium isotopes in fusion-evaporation reactions. Nucl. Sci. Tech. 34, 7 (2023). doi: 10.1007/s41365-022-01157-0http://doi.org/10.1007/s41365-022-01157-0
H.A. Bethe, An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332-341 (1936). doi: 10.1103/PhysRev.50.332http://doi.org/10.1103/PhysRev.50.332
W. Dilg, W. Schantl, H. Vonach et al., Level density parameters for the back-shifted Fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 217, 269-298 (1973). doi: 10.1016/0375-9474(73)90196-6http://doi.org/10.1016/0375-9474(73)90196-6
A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446-1496 (1965). doi: 10.1139/p65-139http://doi.org/10.1139/p65-139
A. Koning, S. Hilaire, S. Goriely, Global and local level density models. Nucl. Phys. A 810, 13-76 (2008). doi: 10.1016/j.nuclphysa.2008.06.005http://doi.org/10.1016/j.nuclphysa.2008.06.005
S. Hilaire, J. Delaroche, M. Girod, Combinatorial nuclear level densities based on the Gogny nucleon–nucleon effective interaction. Eur. Phys. J. A 12, 169-184 (2001). doi: 10.1007/s100500170025http://doi.org/10.1007/s100500170025
F.C. Williams, Particle-hole state density in the uniform spacing model. Nucl. Phys. A 166, 231-240 (1971). doi: 10.1016/0375-9474(71)90426-Xhttp://doi.org/10.1016/0375-9474(71)90426-X
E. Běták, J. Dobeš, The finite depth of the nuclear potential well in the exciton model of preequilibrium decay. Z. Phys. A 279, 319-324 (1976). doi: 10.1007/BF01408305http://doi.org/10.1007/BF01408305
P. Obložinský, Particle-hole state densities for statistical multistep compound reactions. Nucl. Phys. A 453, 127-140 (1986). doi: 10.1016/0375-9474(86)90033-3http://doi.org/10.1016/0375-9474(86)90033-3
S. Hilaire, J. Delaroche, A. Koning, Generalized particle-hole state densities within the equidistant spacing model. Nucl. Phys. A 632, 417-441 (1998). doi: 10.1016/S0375-9474(98)00003-7http://doi.org/10.1016/S0375-9474(98)00003-7
Y. Alhassid, S. Liu, H. Nakada, Particle-number reprojection in the shell model Monte Carlo method: application to nuclear level densities. Phys. Rev. Lett. 83, 4265-4268 (1999). doi: 10.1103/PhysRevLett.83.4265http://doi.org/10.1103/PhysRevLett.83.4265
W.E. Ormand, Estimating the nuclear level density with the Monte Carlo shell model. Phys. Rev. C 56, R1678-R1682 (1997). doi: 10.1103/PhysRevC.56.R1678http://doi.org/10.1103/PhysRevC.56.R1678
J.A. White, S.E. Koonin, D.J. Dean, Shell model Monte Carlo investigation of rare earth nuclei. Phys. Rev. C 61, 034303 (2000). doi: 10.1103/PhysRevC.61.034303http://doi.org/10.1103/PhysRevC.61.034303
N. Cerf, Combinatorial nuclear level density by a Monte Carlo method. Phys. Rev. C 49, 852-866 (1994). doi: 10.1103/PhysRevC.49.852http://doi.org/10.1103/PhysRevC.49.852
N. Cerf, Realistic microscopic level densities for spherical nuclei. Phys. Rev. C 50, 836-844 (1994). doi: 10.1103/PhysRevC.50.836http://doi.org/10.1103/PhysRevC.50.836
B. Strohmaier, S.M. Grimes, H. Satyanarayana, Spectral distribution calculations of the level density of 24Mg. Phys. Rev. C 36, 1604-1610 (1987). doi: 10.1103/PhysRevC.36.1604http://doi.org/10.1103/PhysRevC.36.1604
S.M. Grimes, T.N. Massey, New expansion technique for spectral distribution calculations. Phys. Rev. C 51, 606-610 (1995). doi: 10.1103/PhysRevC.51.606http://doi.org/10.1103/PhysRevC.51.606
J.B. French, K.F. Ratcliff, Spectral distributions in nuclei. Phys. Rev. C 3, 94-117 (1971). doi: 10.1103/PhysRevC.3.94http://doi.org/10.1103/PhysRevC.3.94
N.D. Dang, N.Q. Hung, L.T.Q. Huong, Testing the constant-temperature approach for the nuclear level density. Phys. Rev. C 96, 054321 (2017). doi: 10.1103/PhysRevC.96.054321http://doi.org/10.1103/PhysRevC.96.054321
N.Q. Hung, N.D. Dang, L.T.Q. Huong, Simultaneous microscopic description of nuclear level density and radiative strength function. Phys. Rev. Lett. 118, 022502 (2017). doi: 10.1103/PhysRevLett.118.022502http://doi.org/10.1103/PhysRevLett.118.022502
B. Dey, D. Pandit, S. Bhattacharya et al., Level density and thermodynamics in the hot rotating 96Tc nucleus. Phys. Rev. C 96, 054326 (2017). doi: 10.1103/PhysRevC.96.054326http://doi.org/10.1103/PhysRevC.96.054326
B. Dey, N. Quang Hung, D. Pandit et al., S-shaped heat capacity in an odd–odd deformed nucleus. Phys. Lett. B 789, 634-638 (2019). doi: 10.1016/j.physletb.2018.12.007http://doi.org/10.1016/j.physletb.2018.12.007
B. Agrawal, A. Ansari, Excitation energy and angular momentum dependence of nuclear level densities and spin cut-off factor in spa and spa + rpa approaches. Nucl. Phys. A 640, 362-374 (1998).doi: 10.1016/S0375-9474(98)00462-Xhttp://doi.org/10.1016/S0375-9474(98)00462-X
S. Goriely, A new nuclear level density formula including shell and pairing correction in the light of a microscopic model calculation. Nucl. Phys. A 605, 28-60 (1996). doi: 10.1016/0375-9474(96)00162-5http://doi.org/10.1016/0375-9474(96)00162-5
P. Decowski, W. Grochulski, A. Marcinkowski et al., On superconductivity effects in nuclear level density. Nucl. Phys. A 110, 129-141 (1968). doi: 10.1016/0375-9474(68)90687-8http://doi.org/10.1016/0375-9474(68)90687-8
P. Demetriou, S. Goriely, Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695, 95-108 (2001). doi: 10.1016/S0375-9474(01)01095-8http://doi.org/10.1016/S0375-9474(01)01095-8
T. Papenbrock, H.A. Weidenmüller, Colloquium: random matrices and chaos in nuclear spectra. Rev. Mod. Phys. 79, 997-1013 (2007). doi: 10.1103/RevModPhys.79.997http://doi.org/10.1103/RevModPhys.79.997
N. Shimizu, Y. Utsuno, Y. Futamura et al., Stochastic estimation of nuclear level density in the nuclear shell model: an application to parity-dependent level density in 58ni. Phys. Lett. B 753, 13-17 (2016). doi: 10.1016/j.physletb.2015.12.005http://doi.org/10.1016/j.physletb.2015.12.005
J. Chen, M. Liu, C. Yuan et al., Shell-model-based investigation on level density of xe and ba isotopes. Phys. Rev. C 107, 054306 (2023). doi: 10.1103/PhysRevC.107.054306http://doi.org/10.1103/PhysRevC.107.054306
J. Berger, M. Martinot, Shell effects on state densities with given numbers of excited protons and neutrons. Nucl. Phys. A 226, 391-412 (1974). doi: 10.1016/0375-9474(74)90491-6http://doi.org/10.1016/0375-9474(74)90491-6
M. Girod, P. Dessagne, M. Bernas et al., Spectroscopy of neutronrich nickel isotopes: experimental results and microscopic interpretation. Phys. Rev. C 37, 2600-2612 (1988). doi: 10.1103/PhysRevC.37.2600http://doi.org/10.1103/PhysRevC.37.2600
S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree–Fock–Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008). doi: 10.1103/PhysRevC.78.064307http://doi.org/10.1103/PhysRevC.78.064307
S. Hilaire, M. Girod, S. Goriely et al., Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). doi: 10.1103/PhysRevC.86.064317http://doi.org/10.1103/PhysRevC.86.064317
P. Ring, Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193-263 (1996). doi: 10.1016/0146-6410(96)00054-3http://doi.org/10.1016/0146-6410(96)00054-3
J. Meng, H. Toki, S. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470-563 (2006). doi: 10.1016/j.ppnp.2005.06.001http://doi.org/10.1016/j.ppnp.2005.06.001
D. Vretenar, A. Afanasjev, G. Lalazissis et al., Relativistic Hartree–Bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Phys. Rep. 409, 101-259 (2005). doi: 10.1016/j.physrep.2004.10.001http://doi.org/10.1016/j.physrep.2004.10.001
T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond. Prog. Part. Nucl. Phys. 66, 519-548 (2011). doi: 10.1016/j.ppnp.2011.01.055http://doi.org/10.1016/j.ppnp.2011.01.055
J. Meng, J. Peng, S.Q. Zhang et al., Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation. Front. Phys. 8, 55-79 (2013). doi: 10.1007/s11467-013-0287-yhttp://doi.org/10.1007/s11467-013-0287-y
J. Meng, Relativistic Density Functional for Nuclear Structure (World Scientific, Singapore, 2015). doi: 10.1142/9872http://doi.org/10.1142/9872
S. Shen, H. Liang, W.H. Long et al., Towards an ab initio covariant density functional theory for nuclear structure. Prog. Part. Nucl. Phys 109, 103713 (2019). doi: 10.1016/j.ppnp.2019.103713http://doi.org/10.1016/j.ppnp.2019.103713
M. Sharma, G. Lalazissis, P. Ring, Anomaly in the charge radii of Pb isotopes. Phys. Lett. B 317, 9-13 (1993). doi: 10.1016/0370-2693(93)91561-Zhttp://doi.org/10.1016/0370-2693(93)91561-Z
S.G. Zhou, J. Meng, P. Ring, Spin symmetry in the antinucleon spectrum. Phys. Rev. Lett. 91, 262501 (2003). doi: 10.1103/PhysRevLett.91.262501http://doi.org/10.1103/PhysRevLett.91.262501
J. Li, J.X. Wei, J.N. Hu et al., Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon. Phys. Rev. C 88, 064307 (2013). doi: 10.1103/PhysRevC.88.064307http://doi.org/10.1103/PhysRevC.88.064307
J. Li, Y. Zhang, J. Yao et al., Magnetic moments of 33Mg in the time-odd relativistic mean field approach. Sci. China G 52, 1586-1592 (2009). doi: 10.1007/s11433-009-0194-yhttp://doi.org/10.1007/s11433-009-0194-y
J. Zhao, T. Nikšić, D. Vretenar, Microscopic model for the collective enhancement of nuclear level densities. Phys. Rev. C 102, 054606 (2020). doi: 10.1103/PhysRevC.102.054606http://doi.org/10.1103/PhysRevC.102.054606
W. Zhang, W. Gao, G.T. Zhang et al., Level density of odd—a nuclei at saddle point. Nucl. Sci. Tech. 34, 124 (2023). doi: 10.1007/s41365-023-01270-8http://doi.org/10.1007/s41365-023-01270-8
J.W. Negele, B.D. Serot, E. Vogt, et al., The Relativistic Nuclear Many-Body Problem, Vol. 57 (United States, 1986)
F. Williams, G. Chan, J. Huizenga, The significance of shell corrections in the parameterization of numerical state density calculations. Nucl. Phys. A 187, 225-248 (1972). doi: 10.1016/0375-9474(72)90576-3http://doi.org/10.1016/0375-9474(72)90576-3
T. Døssing, A. Jensen, Nuclear level densities with collective rotations included. Nucl. Phys. A 222, 493-511 (1974). doi: 10.1016/0375-9474(74)90334-0http://doi.org/10.1016/0375-9474(74)90334-0
S. Hilaire, S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63-81 (2006). doi: 10.1016/j.nuclphysa.2006.08.014http://doi.org/10.1016/j.nuclphysa.2006.08.014
R. Capote, M. Herman, P. Obložinský et al., RIPL: reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110, 3107-3214 (2009).doi: 10.1016/j.nds.2009.10.004.http://doi.org/10.1016/j.nds.2009.10.004.(Special Issue on Nuclear Reaction Data)
A. Koning, D. Rochman, Modern nuclear data evaluation with the Talys code system. Nucl. Data Sheets 113, 2841-2934 (2012). doi: 10.1016/j.nds.2012.11.002.http://doi.org/10.1016/j.nds.2012.11.002.(Special Issue on Nuclear Reaction Data)
A.C. Larsen, I.E. Ruud, A. Bürger et al., Transitional γ strength in cd isotopes. Phys. Rev. C 87, 014319 (2013). doi: 10.1103/PhysRevC.87.014319http://doi.org/10.1103/PhysRevC.87.014319
M. Guttormsen, A. Bagheri, R. Chankova et al., Thermal properties and radiative strengths in 160,161,162Dy. Phys. Rev. C 68, 064306 (2003). doi: 10.1103/PhysRevC.68.064306http://doi.org/10.1103/PhysRevC.68.064306
W. Long, J. Meng, N.V. Giai et al., New effective interactions in relativistic mean field theory with nonlinear terms and densitydependent meson–nucleon coupling. Phys. Rev. C 69, 034319 (2004). doi: 10.1103/PhysRevC.69.034319http://doi.org/10.1103/PhysRevC.69.034319
G. Lalazissis, S. Karatzikos, R. Fossion et al., The effective force NL3 revisited. Phys. Lett. B 671, 36-41 (2009). doi: 10.1016/j.physletb.2008.11.070http://doi.org/10.1016/j.physletb.2008.11.070
T. Nikšić, N. Paar, D. Vretenar et al., Dirhb: a relativistic selfconsistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185, 1808-1821 (2014). doi: 10.1016/j.cpc.2014.02.027http://doi.org/10.1016/j.cpc.2014.02.027
G.A. Lalazissis, T. Nikšić, D. Vretenar et al., New relativistic mean-field interaction with density-dependent meson–nucleon couplings. Phys. Rev. C 71, 024312 (2005). doi: 10.1103/PhysRevC.71.024312http://doi.org/10.1103/PhysRevC.71.024312
E.V. Litvinova, A.V. Afanasjev, Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei. Phys. Rev. C 84, 014305 (2011).doi: 10.1103/PhysRevC.84.014305http://doi.org/10.1103/PhysRevC.84.014305
A.P.D. Ramirez, A.V. Voinov, S.M. Grimes et al., Nuclear level densities of 64,66Zn from neutron evaporation. Phys. Rev. C 88, 064324 (2013). doi: 10.1103/PhysRevC.88.064324http://doi.org/10.1103/PhysRevC.88.064324
R. Chankova, A. Schiller, U. Agvaanluvsan et al., Level densities and thermodynamical quantities of heated 93−98Mo isotopes. Phys. Rev. C 73, 034311 (2006). doi: 10.1103/PhysRevC.73.034311http://doi.org/10.1103/PhysRevC.73.034311
N.U.H. Syed, M. Guttormsen, F. Ingebretsen et al., Level density and γ-decay properties of closed shell Pb nuclei. Phys. Rev. C 79, 024316 (2009). doi: 10.1103/PhysRevC.79.024316http://doi.org/10.1103/PhysRevC.79.024316
E. Melby, M. Guttormsen, J. Rekstad et al., Thermal and electromagnetic properties of 166Er and 167Er. Phys. Rev. C 63, 044309 (2001). doi: 10.1103/PhysRevC.63.044309http://doi.org/10.1103/PhysRevC.63.044309
A. Rahmatinejad, T.M. Shneidman, N.V. Antonenko et al., Collective enhancements in the level densities of Dy and Mo isotopes. Phys. Rev. C 101, 054315 (2020). doi: 10.1103/PhysRevC.101.054315http://doi.org/10.1103/PhysRevC.101.054315
A.C. Larsen, R. Chankova, M. Guttormsen et al., Microcanonical entropies and radiative strength functions of 50,51V. Phys. Rev. C 73, 064301 (2006). doi: 10.1103/PhysRevC.73.064301http://doi.org/10.1103/PhysRevC.73.064301
E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative Bayesian Monte Carlo for nuclear data evaluation. Nucl. Sci. Tech. 33, 50 (2022). doi: 10.1007/s41365-022-01034-whttp://doi.org/10.1007/s41365-022-01034-w
H.K. Toft, A.C. Larsen, U. Agvaanluvsan et al., Level densities and γ-ray strength functions in sn isotopes. Phys. Rev. C 81, 064311 (2010). doi: 10.1103/PhysRevC.81.064311http://doi.org/10.1103/PhysRevC.81.064311
U. Agvaanluvsan, A. Schiller, J.A. Becker et al., Level densities and γ-ray strength functions in 170,171,172Yb. Phys. Rev. C 70, 054611 (2004). doi: 10.1103/PhysRevC.70.054611http://doi.org/10.1103/PhysRevC.70.054611
A.P.D. Ramirez, A.V. Voinov, S.M. Grimes et al., Level density and mechanism of deuteron-induced reactions on 54,56,58Fe. Phys. Rev. C 92, 014303 (2015). doi: 10.1103/PhysRevC.92.014303http://doi.org/10.1103/PhysRevC.92.014303
B.M. Oginni, S.M. Grimes, A.V. Voinov et al., Test of level density models from reactions of 6Li on 58Fe and 7Li on 57Fe. Phys. Rev. C 80, 034305 (2009). doi: 10.1103/PhysRevC.80.034305http://doi.org/10.1103/PhysRevC.80.034305
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构