logo

Optical absorption of Tl+ ions in KBr1-xIx:TlI mixed crystals

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

Optical absorption of Tl+ ions in KBr1-xIx:TlI mixed crystals

Eswaran P
Ravisankar R
Nagarajan S
Nuclear Science and TechniquesVol.20, No.4pp.208-218Published in print 20 Aug 2009
45602

Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported. The absorption spectra indicated the appearance of additional bands on the low energy side of the Characteristic A, B and C absorption bands of KBr:Tl+ single crystals with increasing iodine composition. Comparing with earlier reports, the additional bands were attributed to the complex Tl+ centers in the mixed configuration surrounded by Br-and I- ions as nearest neighbors. The absorption spectra of gamma irradiated mixed crystals showed F band, which shifts towards low energy side with the composition of iodine ions in the mixed crystals.

F-centersKBr1-x Ix:TlI mixed CrystalsOptical absorptionTl+ ionsMixed halidesA-absorption band
References
[1] Jacobs P W M. J Phys Chem Solids, 1991, 52: 35-67.
[2] Ranfagni D, Mugnai M, Bacci G, et al. Adv Phys, 1983, 32: 823-826.
[3] Taiju T P W M, Jacobs J. Phys Chem Solids, 1991, 52: 69-80.
[4] Kynev K, Tabakova V. J Phys C: Solid State Phys, 1981, 4: 1069-1074.
[5] Cruz E Z, Negron A, Ramos A A, et al. Murrieta Radiat Phys Chem. 2001, 61: 443-444.
[6] Hashimoto S, Tango M. J Phys Soc Japan, 1998, 67: 3322-3323.
[7] Shinoya S, William M Y. Phosphor handbook. Washington: CRC Press, 2000.
[8] Blasse G, Grabmaier C. Luminescent materials. Berlin: Springer Verlac, 1995.
[9] Von Seggern H, Meijerink A, Voigt T, et al. J Appl Phys, 1989, 66: 4418-4424.
[10] Nanto H, Takei Y, Nishimura A, et al. Processing of the SPIe, 2006, 6142: 985-987.
[11] Ganapathy S N, SelvaSekaraPandian S, Pal H, et al. Mater Lett, 2003, 57: 2021-2028.
[12] Kleemann W, Fischer F, Physik Z. Physics, 1966, 197: 75-100 (in German).
[13] Hashomoto S, Mori M, Ichimura N, et al. Thin Solid Films, 2001, 386: 14-18.
[14] Kristofel N N, Izv A N. ESSR Ser Fiz Mat, 1968, 2: 197-199.
[15] Sangster J, Pelton A D. J Phys Chem, 1987, 16: 509-561.
[16] Schweizer S, Phys Stat Sol (a), 2001, 187: 335-393.
[17] Nagarajan S, Eswaran P. Nucl Instrum Methods Phys Res B, 2009, 267: 1800-1806.
[18] Dong C. J Appl Cryst, 1999, 32: 838-838.
[19] Michael D J, Teegarden K. J Phys Chem Solids, 1968, 29: 2141-2151.
[20] Halperin A. J Lumin, 1978, 16: 457-469.
[21] Tarasova L I, Shatseva L S. Opt Spectrosc, 1976, 41: 605-608.
[22] Etzel H W, Patterson D A. Phys Rev, 1958, 112: 1112-1116.
[23] Bobkova I S, Ivanova N I. Opt Spectrosc, 1984, 56: 521-524.
[24] Gindina R I, Elango A A, Khaav A A, et al. Opt Spectrosc, 1973, 34: 63-66.
[25] Tsuboi T. Can J Phys, 1976, 54: 2418-2421.
[26] Agullo L F, Lopez J F, Jaque F. Cryst Latt Def Amorph Mater, 1982, 9: 227-252.
[27] Reitz R A, Butler W A, John R, et al. J Chem Phys, 1962, 37: 1893-1897.
[28] Smakula A, Maynard N C, Repucci A, et al. Phys, Rev. 1963, 130: 113-119.
[29] Sastry S B S, Muralidharan G, Nagarajan S. Cryst Latt Def Amorp Mater, 1987, 17: 211-215.
[30] Hageseth G T. Phys Rev B, 1972, 5: 4060-4064.
[31] Winter E M, Wolfe D R, Christy R W. Phys Rev, 1969, 186: 949-952.