logo

The characterization of low energy molecular hydrogen ion-induced defects in synthetic diamond by optical absorption

The characterization of low energy molecular hydrogen ion-induced defects in synthetic diamond by optical absorption

Ma Zhong-Quan
Zheng Yu-Feng
Aoki Y
Naramoto H
Nuclear Science and TechniquesVol.9, No.2pp.102-108Published in print 01 May 1998
24700

The results of optical absorption analysis of the synthetic diamonds (type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 1015〜1017 H/cm2 (at 100 K), showed that the increase of optical density (OD) of modified layer (〜140 nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process. The range of relative optical band gap (Er, opt) around 2.0 eV suggested that an amorphous carbon network structure like a-C film, which probably contains some localized subtetrahedral-coordinated clusters embedded in the fourfold (sp3) sites, was tentatively found in this layer, basing on the optical gap of carbon materials. The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as-implanted samples, while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon (a-C:H). In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm.

Optical absorptionDiamondHydrogen ion implantation
References
1 Braunstcin G, Kalish R. J Appl Phys, 1983, 54: 2106
2 Prins J F. Phys Rev, 1988, B38: 5567
3 Sandhu G S, Swanson M L, Chu W K. Appl Phys Lett, 1989, 55: 1397
4 Prins J F. Nucl Instr & Meth, 1991, B59/60: 1387
5 Lau W M, Huang L J, Bello I et al. J Appl Phys, 1994, 75: 3385
6 Clark C D, Collins A T, Woods G S. In: The properties of Natural and Synthetic Diamond, ed byField J E, London: Academic, 1992, 30
7 Lawson S C, Davies G, Collins A T et al. J Phys:Condens Matter, 1992, 4: 3439
8 Mainwood A. Phys Rev, 1994, B49: 7934
9 Niwase K, Kakimoto Y, Tanaka I et al. Nucl Instr Meth, 1994, B91: 78
10 Hunn J D, Withrow S P, White C W et al. Phys Rev, 1995, B52: 8106
11 Nazare M H. In: Defects in Semiconductors, ed byH.J. Von Bardeleben, 1986, 917
12 Van Enckevortnd W J P, Versteegcn E H. J Phys: Condens Matter, 1992, 4: 2361
13 Lowther J E, van Wyk J A. Phys Rev, 1994, B49: 11010
14 Wynands H A, Malta D M, Fox B A et al. Phys Rev, 1994, B49: 5745
15 Robins L H, Black D R. J Mat Res, 1994, 9: 1298
16 Davies G, Lawson S C, Collins A T et al. Phys Rev, 1992, B46: 13157
17 Nazare M H, das Neves A J. J Phys C:Solid State Phys, 1987, 20: 2713
18 Smith R, Webb R P. Nucl Instr Meth, 1991, B59/60: 1378
19 van Enckcvort W J P, Visser E. Phil Mag, 1990, 62: 597
20 Burns R C, Cvetkovic V, Dodge C N et al. J Cryst Growth, 1990, 104: 257
21 de Sousa J P, Bondinov H, Fichtner P E P. Appl Phys Lett, 1994, 64: 3596
22 Shwe C, Kraisingdecha P, Gal M et al. J Appl Phys, 1993, 74: 6587
23 Spits R H, Derry T E, Prins J F. Nucl Instr Meth, 1992, B64: 210
24 Savvides N. J Appl Phys, 1986, 59: 4133
25 O' Robertson J, Reilly E P. Phys Rev, 1987, B35: 2946
26 Yoshikawa M, Katagiri G, Ishita H et al. J Appl Phys, 1988, 64: 6464
27 Kushita K N, Hojou K, Furuno S et al. J Nucl Mat, 1992, 191/194: 346
28 Collins A T. J Phys, 1980, 13: 2641
29 Collins A T, Davies G, Wood G S. J Phys C:Solid State Phys, 1986, 19: 3933
30 Smith F W. J Appl Phys, 1984, 55: 764
31 Wang C Z, Ho K M. Phys Rev Lett, 1993, 71: 1184; 1994, 72: 2666; J Phys: Condens Matter 1994, 6: L239