logo

Scanning transmission ion microscopy on Fudan SPM facility

LOW ENERGY ACCELERATOR AND RADIATION APPLICATIONS

Scanning transmission ion microscopy on Fudan SPM facility

LI Yongqiang
SATOH Takahiro
SHEN Hao
ZHENG Yi
LI Xinyi
LIU Bo
Nuclear Science and TechniquesVol.22, No.5pp.282-286Published in print 20 Oct 2011
39701

In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode (Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, paramecium attached on the top of Kapton tube was measured by STIM.

Energy lossSTIMPIXESpatial resolutionComputed tomography
References
[1] Siegele R, Kachenko A G, Ionescu M. Nucl Instrum Meth B, 2009, 267: 2054-2059.
[2] Watt F, Bettiol A A, van Kan J A. Nucl Instrum Meth B, 2009, 267: 2113-2116.
[3] Melnik K I, Magilin D V, Ponomarev A V. Nucl Instrum Meth B, 2009, 267: 2036-2040.
[4] Doyle B L, Foiles S M, Antolak A J. Nucl Instrum Meth B, 2009, 267: 1995-1998.
[5] Ren M Q. Nuclear Microscopy: Development and Applications in Atherosclerosis, Parkinson's Disease and Materials Physics. Finland: Mathematics and Natural Sciences of the University of Jyväskylä, 2007, 5-24.
[6] Knoll J F. Radiation Detection and Measurement. New York (USA): Wiley press, 1989, 20-40.
[7] Tang J Y, Zhang Z H. The stopping power range and channelling effect of particle passing through matter Nuclear Energy. Beijing: Atomic energy press, 1986, 32-40.
[8] Minqin R, van Kan J A, Bettiol A A. Nucl Instrum Meth B, 2007, 260: 124-129.
[9] Pontau A E, Antolak A J, Morse D H. Nucl Instrum Meth B, 1989, 40−41: 646-650.
[10] Schofield R, Lefevre H, Shaffer M. Nucl Instrum Meth B, 1989, 40-41: 698-701.
[11] Fischer B E, Mühlbauer C. Nucl Instrum Meth B, 1990, 47: 271-282.
[12] Pontau A E, Antolak A J, Morse D H. Nucl Instrum Meth B, 1991, 54: 383-389.
[13] Rothermel M, Reinert T, Andrea T. Nucl Instrum Meth B, 2010, 268: 2001-2005.
[14] Schwertner M, Sakellariou A, Reinert T. Ultramicrosopy, 2006, 106: 574-581.
[15] Wegdén M, Elfman M, Kristiansson P. Nucl Instrum Meth B, 2006, 249: 756-759.
[16] Satoh T, Oikawa M, Kamiya T. Nucl Instrum Meth B, 2009, 267: 2125-2127.
[17] Lefevre H W, Schofield R M S, Ciarlo D R. Nucl Instrum Meth B, 1991, 54: 47-51.
[18] Bench G, Saint A, Legge G J F, Cholewa M. Nucl Instrum Meth B, 1993, 77: 175-183.
[19] Zhong L, Zhuang W, Shen H. Nucl Instrum Meth B, 2007, 260: 109-113.
[20] Devès G, Matsuyama S, Barbotteau Y. Rev Sci Instrum, 2006, 77: 056102.
[21] Aguer P, Alves L C, Barberet Ph. Nucl Instrum Meth B, 2005, 231: 292-299.
[22] Ma L, Chen Q Z, Xue J M. 2008, Radiat Meas, 43: S598-S602.
[23] Szilágyi E. Nucl Instrum Meth B, 2000, 161-163: 37-47.
[24] Pászti F, Szilágyi E, Horváth Z E. Nucl Instrum Meth B, 1998, 136-138: 533-539.
[25] Amsel G, d’Artemare E, Battistig G. Nucl Instrum Meth B, 1997, 122: 99-112.
[26] Tosaki M, Ohsawa D, Isozumi Y. Nucl Instrum Meth B, 2004, 219-220: 241-245.
[27] Sigmund P. Particle penetration and radiation effects. Berlin Heidelberg (Germany): Springer press, 2005, 35-312.
[28] Merchant M J, Mistry P, Browton M. Nucl Instrum Meth B, 2005, 231: 26-31.
[29] Kertész Zs, Szikszai Z, Uzonyi I. Nucl Instrum Meth B, 2005, 231: 106-111.
[30] Michelet C, Moretto Ph. Nucl Instrum Meth B, 1999, 150: 173-178.