logo

Electrical and optical properties of MWNTs/HDPE composites in Terahertz region

LOW ENERGY ACCELERATOR AND RADIATION APPLICATIONS

Electrical and optical properties of MWNTs/HDPE composites in Terahertz region

CHEN Xiliang
CHEN Xin
ZHU Zhiyong
Nuclear Science and TechniquesVol.23, No.3pp.156-162Published in print 20 Jun 2012
30500

Optical and electrical properties of composites, prepared by filling of high density polyethylene (HDPE) with two kinds of multi-walled carbon nanotubes (MWNTs) differing in diameters, were explored by terahertz time-domain spectroscopy (THz-TDS) in the frequency range from 0.2 to 1.6 THz. It is found that composite with larger-diameter MWNTs possesses larger absorption coefficient and conductivity at the same concentration. The real part of the ac conductivity of the composites follows a power law dependence on frequency. And the power index is around 0.75 regardless of the MWNT concentration and diameter. The experimental data were analyzed with Cole-Cole equation under the assumption that the conductive clusters dispersed in the polymer matrix behave like dipoles and contribute mainly to the dielectric loss. It is found that both of the composites have similar values of relaxation time and distribution parameter. With increase of the MWNTs concentration, the relaxation time increases and tends to saturate at 0.7 ps after passing through the percolation threshold.

Carbon nanotubesTransport propertiesTerahertz time-domain spectroscopyCole-Cole equation
References
[1] Han P Y, Tani M, Usami M, et al. J Appl Phys, 2001, 89: 2357-2359.
[2] Popov V N. Mat Sci Eng R, 2004, 43: 61-102.
[3] Kymakis E, Amaratunga G A J. Appl Phys Lett, 2002, 80: 112-114
[4] Seo M A, Lee J W, Kim D S. J Appl Phys, 2006, 99: 066103-066106.
[5] Hecht D, Hu L B, Grüner G. Appl Phys Lett, 2006, 89: 133112-133114.
[6] Jeon T I, Son J H, An G H, et al. J Appl Phys, 2005, 98: 034316-4.
[7] Jeon T I, Son J H, An G H, et al. J Korean Phys Soc, 2001, 39: S185-S188. Chen X L, Ma M W, Yang X M, et al. Nucl Sci Tech, 2009, 20: 265-270.
[8] Chen X L, Ma M W, Song Y F, et al. Spectrosc Spect Anal, 2011, 31: 906-910.
[9] Chen X L, Ma M W, Yang X M, et al. Acta Phys Chim Sin, 2008, 24: 1969-1974.
[10] Duvillaret L, Garet F, Coutaz J L. IEEE J Sel Top Quantum Electron, 1996, 2: 739-746.
[11] Adriaanse L J, Reedijk J A, Teunissen P A A, et al. Phys Rev Lett, 1997, 78: 1755-1758.
[12] Song Y, Noh T W, Lee S I, et al. Phys Rev B, 1986, 33: 904-909.
[13] Gefen Y, Aharony A, Alexander S. Phys Rev Lett, 1983, 50: 77-80.
[14] Hu L, Hecht D S, Gruner G. Nano Lett, 2004, 4: 2513-2517.
[15] Durkop T, Getty S A, Cobas E, et al. Nano Lett, 2004, 4: 35-39.
[16] Calame J P. J Appl Phys, 2003, 94: 5945-5957.
[17] Yamanaka S, Fukuda T, Sawa G, et al. IEEE Trns Electr Insul, 1992, 27: 1073-1082.