logo

Radiolytic degradation and mechanism study of electron beam-irradiated solutions of 4-tert-octylphenol

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Radiolytic degradation and mechanism study of electron beam-irradiated solutions of 4-tert-octylphenol

WANG Liang
WU Minghong
XU Gang
LIN Ning
BU Tingting
ZHENG Jisan
TANG Liang
Nuclear Science and TechniquesVol.23, No.5pp.295-304Published in print 20 Oct 2012
43500

In this study, we have investigated the degradation and primary radiolytic degradation mechanism of 4-tert-octylphenol (4-t-OP) by using of electron beam (EB) -irradiation. The results show that at an absorbed dose of 10 kGy and an initial concentration of 25 mg·L-1, the degradation of 4-t-OP in a methanol/water reduction system is higher than in a acetonitrile/water oxidation system by 19.4% and higher than in an acetone/water system by 26.8%, which is due to both of ·OH and eaq- playing an important role in the decomposition of 4-t-OP, although the latter is more effective. The degradation rate of 4-t-OP will decrease with increment of absorbed dose in a methanol/water solution, and increase with decrement of initial concentration at a constant absorbed dose. The degradation efficiency will also decrease with the addition of anions and H2O2 into the solution. A system saturated with N2 will make an increment in the degradation of 4-t-OP. The pH value of solution has been also found to affect the degradation efficiency, while the degradation is more efficient in alkaline conditions. Finally, the initial products involved in degradation reaction have been determined to be ethylbenzene, styrene, bicyclo[4.2.0]octa-1,3,5-triene, 2,2,4-trimethylpentane and p-tert-butyl-phenol, which may arise from eaq- attack at the position of the alkyl side chain of 4-t-OP molecule. The results have been revealed that EB irradiation is a promising method for degradation of 4-t-OP, and eaq- may be main reactive species to attack at the position of the alkyl side chain of 4-t-OP.

4-tert-octylphenol (4-t-OP)Endocrine disruptorDegradationElectron beam (EB) irradiationMechanism
References
[1] Luo S S, Fang L, Wang X W, et al. J Chromatogr A, 2010, 1217: 6762-6768.
[2] Duong C N, Ra J S, Cho J, et al. Chemosphere, 2010, 78: 286-293.
[3] Gadzala-Kopciuch R, Filipiak A, Buszewski B. Talanta, 2008, 74: 655-660.
[4] Wolff S W, Ely T E, Chantarojwong T M, et al. Integr Comp Biol, 2009, 49: E326-E326.
[5] Vazquez G R, Meijide F J, Da Cuna R H, et al. Comp Biochem Phys C, 2009, 150: 298-306.
[6] Zoller U. Environ Int, 2006, 32: 269-272.
[7] Kawaguchi M, Inoue K, Yoshimura M, et al. Anal Chim Acta, 2004, 505: 217-222. Chen B, Duan J C, Mai B X, et al. Chemosphere, 2006, 63: 652-661.
[8] Jin X L, Jiang G B, Huang G L, et al. Chemosphere, 2004, 56: 1113-1119.
[9] Mazellier P, Leverd J. Photochem Photobiol Sci, 2003, 2: 946-953.
[10] Bledzka D, Gryglik D, Olak M, et al. Radiat Phys Chem, 2010, 79: 409-416.
[11] Yamazaki S, Mori T, Katou T, et al. J Photoch Photobio A, 2008, 199: 330-335.
[12] Zhou J L. Environ Sci Technol, 2006, 40: 2225-2234.
[13] Zhang S J, Yu H Q. Water Res, 2004, 38: 309-316.
[14] Guo C S, Ge M, Liu L, et al. Environ Sci Technol, 2010, 44: 419-425.
[15] Kuo C Y, Wu C H, Lin H Y. Desalination, 2010, 256: 37-42.
[16] Chmielewski A G, Haji-Saeid M. Radiat Phys Chem, 2004, 71: 17-21.
[17] Mohamed K A, Basfar A A, Al-Kahtani H A, et al. Radiat Phys Chem, 2009, 78: 994-1000.
[18] Zhang J B, Zheng Z, Yang G J, et al. Nucl Instrum Meth Phys Res A, 2007, 580: 687-689.
[19] Yu S Q, Hu J, Wang J L. J Hazard Mater, 2010, 177: 1061-1067.
[20] Chen Y P, Liu S Y, Yu H Q, et al. Chemosphere, 2008, 72: 532-536.
[21] Wu M H, Bao B R. Application of radiation technology in environmental protection. Beijing (China): Chemical Industry Press, 2002, 16.
[22] Singh A, Kremers W. Radiat Phys Chem, 2002, 65: 467-472.
[23] Drzewicz P, Nalecz-Jawecki G, Gryz M, et al. Chemosphere, 2004, 57: 135-145.
[24] Evgenidou E, Bizani E, Christophoridis C, et al. Chemosphere, 2007, 68: 1877-1882.
[25] Halhouli K A. J Photochem Photobiol A-Chem, 2008, 200: 421-425.
[26] Ma H J, Wang M, Yang R Y, et al. Chemosphere, 2007, 68: 1098-1104.
[27] Campos S X, Vieira E M, Cordeiro P J M, et al. Radiat Phys Chem, 2003, 68: 781-786.
[28] Foldvary C M, Wojnarovits L. Radiat Phys Chem, 2009, 78: 13-18.
[29] Patil A B, Patil K R, Pardeshi S K. J Hazard Mater, 2010, 183: 315-323.
[30] Ziegmann M, Frimmel F H. Water Sci Technol, 2010, 61: 273-281.
[31] Yang R Y, Wang M, Shen Z Q, et al. Radiat Phys Chem, 2007, 76: 1122-1125.
[32] Follut F, Leitner N K V. Chemosphere, 2007, 66: 2114-2119.
[33] Wu M H, Liu N, Xu G, et al. Radiat Phys Chem, 2011, 80: 420-425.
[34] Getoff N. Radiat Phys Chem, 2002, 65: 437-446.
[35] Getoff N. Radiat Phys Chem, 1996, 47: 581-593.
[36] Basfar A A, Mohamed K A, Al-Abduly A J, et al. Radiat Phys Chem, 2007, 76: 1474-1479.
[37] Slegers C, Maquille A, Deridder W, et al. Radiat Phys Chem, 2006, 75: 977-989.