logo

A nanoresonant gold-aptamer probe for rapid and sensitive detection of thrombin

INTERDISCIPLINARY STUDIES

A nanoresonant gold-aptamer probe for rapid and sensitive detection of thrombin

ZHENG Xiaoxue
WEN Yanqin
ZHANG Juan
WANG Lihua
SONG Shiping
ZHANG Hua
FAN Chunhai
Nuclear Science and TechniquesVol.23, No.5pp.317-320Published in print 20 Oct 2012
47300

Resonance light scattering (RLS) is a sensitive technique for monitoring scattered light induced by extended aggregates of chromophores. It has been widely used to study aggregations for its simple manipulation, high sensitivity and great versatility. Gold nanoparticles generate colorful light-scattering signals due to their unique surface plasmon resonances, hence extraordinary light scattering upon aggregation. In this paper we report a rapid and sensitive method based on gold nanoparticles and DNA aptamer to detect protein biomarkers by RLS. Thiol modified thrombin aptamer was covalently assembled to the surface of gold nanoparticles as nanobio probes. As thrombin has two specific binding sites for its aptamer, it can bridge the well dispersed nanoparticles and lead to a network of particle aggregations. The formation of aggregation ia measured by RLS, and the specific detection of thrombin at nM level is achieved. The method has good specificity.

Resonance light scatteringNanoprobesDNA aptamerProtein detection
References
[1] Breaker R R. Curr Opin Chem Bio, 1997, 1: 26-31.
[2] Ellington A D, Szostak J W. Nature, 1990, 346: 818-822.
[3] Bini A, Minunni M, Tombelli S, Centi S, Mascini M. Anal Chem, 2007, 79: 3016-3019.
[4] Centi S, Tombelli S, Minunni M, et al. Anal Chem, 2007, 79: 1466-1473.
[5] Heyduk E, Heyduk T. Anal Chem, 2005, 77: 1147-1156.
[6] Ho H A, Leclerc M. J Am Chem Soc, 2004, 126: 1384-1387.
[7] Liss M, Petersen B, Wolf H, et al. Anal Chem, 2002, 74: 4488-4495.
[8] Pavlov V, Xiao Y, Shlyahovsky B, et al. J Am Chem Soc, 2004, 126: 11768-11769.
[9] Xiao Y, Piorek B D, Plaxco KW, Heeger A J. J Am Chem Soc, 2005, 127: 17990-17991.
[10] Li D, Song S P, Fan C H. Accounts Chem Res, 2010, 43: 631-641.
[11] Pasternack R F, Bustamante C, Collings P J, et al. J Am Chem Soc, 1993, 115: 5393-5399.
[12] Bao P, Frutos A G, Greef C, et al. Anal Chem, 2002, 74: 1792-1797.
[13] Feng P, Shu W Q, Huang C Z, et al. Anal Chem, 2001, 73: 4307-4312.
[14] Liu S P, Liu Z F, Luo H Q. Anal Chim Acta, 2000, 407: 255-260.
[15] Zhong H, Wang K, Chen H-Y. Anal Biochem, 2004, 330: 37-42.
[16] Ma C, Li K, Tong S. Analyst, 1997, 122: 361-364.
[17] Ma C Q, Li K A, Tong S Y. Anal Biochem, 1996, 239: 86-91.
[18] Du B A, Li Z P, Liu C H. Angew Chem Int Ed, 2006, 45: 8022-8025.
[19] Pasternack R, Collings P. Science, 1995, 269: 935-935.
[20] Song S P, Qin Y, He Y, et al. Chem Soc Rev, 2010, 39: 4234-4243.
[21] Bock L C, Griffin L C, Latham J A, et al. Nature, 1992, 355: 564-566.
[22] Grabar K C, Freeman R G, Hommer M B, et al. Anal Chem, 1995, 67: 735-743.
[23] He S J, Li D, Zhu C F, et al. Chem Commun, 2008, 40: 4885-4887.
[24] Zhang J, Wang L H, Pan D, et al. Small, 2008, 4: 1196-1200.
[25] Song S P, Liang Z Q, Zhang J, et al. Angew Chem Int Ed, 2009, 48: 8670-8674.
[26] Zhang J, Wang L H, Zhang H, et al. Small, 2010, 6: 201-204.