logo

Stopping powers of energetic electrons penetrating condensed matter—theory and application

LOW ENERGY ACCELERATOR, RAY TECHNOLOGY AND APPLICATIONS

Stopping powers of energetic electrons penetrating condensed matter—theory and application

TAN Zhen-Yu
XIA Yue-Yuan
Nuclear Science and TechniquesVol.15, No.4pp.200-212Published in print 01 Aug 2004
23400

In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed.

Stopping powerElectron inelastic scatteringOrganic compoundsBethe theoryDielectric response theory
References
[1] Goldstein J I et al. Scanning electron microscope and X-ray microanalysis, 3rd Ed. New York: Academic/Plenum Publisher, 2003
[2] Zhang M C et al. Electron beam scanning and imaging and application in micro-region analyses (in Chinese), Beijing: Atomic Energy Publisher, 1987
[3] Hawryluk R J, Hawryluk A, Smith H. J Appl Phys, 1974, 45: 2551
[4] Nikjoo H, Uehara S, Wilson W E et al. Int J Radiat Biol, 1998, 73: 355
[5] Andreo P. Phys Med Biol, 1991, 36: 861
[6] Olson M V. Proc Natl Acad Sci, USA, 1993, 90: 4338
[7] Wang Y P, Sonntag K, Rudloff E. Theor Appl Genet, 2003, 106: 1147
[8] Xia G M, Xiang F N, Zhou A F et al. Theor./Appl Genet, 2003, 107: 299
[9] Zhao K N et al. Progress in plant radiation genetic breeding (in Chinese), Beijing: Atomic Energy Publisher, 1990
[10] Nikjoo H, Uehara S, Khvostunov I G et al. Phys Medica XVII, 2001, 38
[11] Bethe H A. Ann Phys(Leipzig), 1930, 5: 325
[12] Bethe H A, Ashkin J. Experimental nuclear physics, New York: John Wiley, 1953, 252
[13] Berger M J, Seltzer S M.

In: Studies in penetration of charged particles in matter, Nucl Sci Ser Report 4, 39, NAS-NRC Publ No. 1133.

Natl. Acad. Sci. Washingtion D. C., 1964, 205
Baidu ScholarGoogle Scholar
[14] Rao-Sahib T S, Wittry D B. J Appl Phys, 1974, 45: 5060
[15] Kotera M, Murata K, Nagami K. J Appl Phys, 1981, 52: 7403
[16] Love G, Cox M G, Scott V D. J Phys D: Appl Phys, 1978, 11: 7
[17] Love G, Scott V D. J Phys D: Appl Phys, 1978, 11: 1369
[18] Peterson P A, Radzimski Z J, Schwalm S A et al. J Vac Sci Technol, 1992, B10: 308
[19] Kanaya K, Okayama S. J Phys D: Appl Phys, 1972, 5: 43
[20] Kotera M, Murata K, Nagami K. J Appl Phys, 1981, 52: 907
[21] Joy D C, Luo S. Scanning, 1989, 11: 176
[22] Reimer L, Stelter D. Scanning, 1986, 8: 265
[23] Ritchie R H, Garber F W, Makia Y et al. Adv Radiat Biol, New York: Academic Press, 1969
[24] Shimizu R, Ichimura S.

Quantitative Analysis by Auger Electron Spectroscopy. Toyota Foundation Research Report No. I-006

, Toyota Foundation, Toyota, 1981
Baidu ScholarGoogle Scholar
[25] Tung C J, Ashley J C, Ritchie R H. Surf Sci, 1979, 81: 427
[26] Gaurin R, L'Espérance , St-Laurent . Scanning, 1992, 14: 37
[27] Browning R, Emori T, traut E P et al. J Vac Sci Technol B, 1991, 9: 3578
[28] Howell P G T. Scanning, 1996, 18: 428
[29] Ko Y U, Kim S W, Chung M S. Scanning, 1998, 20: 447
[30] Tan Z Y, He Y C. Scanning, 2002, 24: 46
[31] Lindhard J. K Dan Vidensk Selsk Mat-Fys. Medd 28, 1954, 8: 1
[32] Ritchie R H. Phys Rev, 1959, 114: 644
[33] Pines D. Elementary excitations in solids, New York: Benjamin, 1964
[34] Handbook of optical constants of solids, edited by Palik E D, New York: Academic Press, 1985
[35] Handbook of optical constants of solids, edited by Palik E D, New York: Academic Press, 1991
[36] Ritchie R H, Howie A. Phil Mag, 1977, 36: 463
[37] Kwei C M, Tung C J. J Phys D: Appl Phys, 1986, 19: 255
[38] Kwei C M, Chen Y F, Tung C J et al. 1993, 293: 202
[39] Emfietzoglou D, Moscovitch M. Nucl Instr and Meth B, 2002, 193: 71
[40] Akkerman A, Boutboul T, Breskin A et al. Phys Stat Sol, 1996, 198: 796
[41] Boutboul T, Akkerman A, Breskin A et al. J Appl Phys, 1996, 79: 6714
[42] Akkerman A, Akkerman E. J Appl Phys, 1999, 86: 5809
[43] Gryzinski M. Phys Rev, 1965, 138: A336
[44] Fry J L. Phys Rev, 1969, 179: 178
[45] Painter L R, Arakawa E T, Williams M W et al. Radiat Res, 1980, 83: 1
[46] Ashley J C, Auderson V E. J Electron Spectrosc Relat Phenom, 1981, 24: 127
[47] Ashley J C. Radiat Res, 1982, 89: 25
[48] Tung C J, Ashley J C, Ritchie R H. Surf Sci, 1979, 81: 427
[49] Penn D R. Phys Rev B, 1987, 35: 482
[50] Tanuma S, Powell C J, Penn D R. Surf Interface Anal, 1988, 11: 577
[51] Tanuma S, Powell C J, Penn D R. Surf Interface Anal, 1991, 17: 911
[52] Tanuma S, Powell C J, Penn D R. Surf Interface Anal, 1991, 17: 927
[53] Tanuma S, Powell C J, Penn D R. Surf Interface Anal, 1993, 21: 165
[54] Ding Z J, Shimizu R. Surf Sci, 1989, 222: 313
[55] Ding Z J, Shimizu R. Scanning, 1996, 18: 92
[56] Öztürk N, Williamson W. J Appl Phys, 1993, 74: 4723
[57] Ashley J C. J Electron Spectrosc Relat Phenom, 1990, 50: 323
[58] Fernández ,-Vareal J M, Mayol R, Liljequist D et al. J Phys: Condens Matter, 1993, 5: 3593
[59] Emfietzoglou D, Moscovitch M. Nucl Instr and Meth B, 2002, 193: 71
[60] Tan Z, Xia Y, Liu X et al. Appl Phys A, 2004, in press
[61] Henke B L, Gullikson E M, Davis J C. At Data Nucl Data Tables, 1993, 54: 181
[62] Dingfelder M, Hantke D, Inokuti M et al. Radiat Phys Chem, 1998, 53: 1
[63] Inagaki T, Hamm R N, Arakawa E T et al. J Chem Phys, 1974, 61: 4246
[64] Robinson V N E. J Phys D: Appl Phys, 1975, 8: L74
[65] Murata K, Matsukawa T, Shimizu R. Jap J Appl Phys, 1971, 10: 678
[66] Chatterjee A, Holley W R. Adv Radiat Biol, 1993, 17: 181