logo

Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

Mingzhang LIN
Mehran MOSTAFAVI
Yusa MUROYA
Isabelle LAMPRE
Yosuke KATSUMURA
Nuclear Science and TechniquesVol.18, No.1pp.2-9Published in print 20 Jan 2007
48800

The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1·m2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.

PolyolsSolvated electronsPicosecond pulse radiolysis
References
[1] Hart E J, Boag J W. J Am Chem Soc, 1962, 84: 4090-4095.
[2] Boag J W, Hart E J. Nature, 1963, 197: 45-46.
[3] Keene J P. Nature 1963, 197: 47.
[4] Hart E J, Anbar M. The Hydrated Electron, New York: Wiley-Interscience, 1970.
[5] Dorfman L M, Jou F Y. Ber. Bunsen-Ges. 1971, 75: 681-685.
[6] Dorfman L M, Jou F Y. “

Optical absorption spectrum of the solvated electron in ethers and in binary liquid systems

.” In Electrons in Fluids. Ed. Jortner J, Kestner N R. New-York, Springer, 1972, 447-457.
Baidu ScholarGoogle Scholar
[7] Ferradini C, Jay-Gerin J P. Radiat. Phys. Chem. 1996, 48: 473-480.
[8] Belloni J, Marignier J L. Radiat. Phys. Chem, Int. J. Radiat. Appl. Instrum. Part C, 1989, 34: 157-171.
[9] Sauer M C, Arai S, Dorfman L M. J. Chem. Phys. 1965, 42: 708-712.
[10] Brodsky A M, Tsarevsky A V. Inst. Elektrokhim. 1975, 222: 1365-1368.
[11] Brodsky A M, Tsarevsky A V. J. Phys. Chem. 1984, 88: 3790-3799.
[12] Jou F Y, Freeman G R. Can. J. Chem. 1979, 59: 591-597.
[13] Okazaki K, Idriss-Ali K M, Freeman G R. Can. J. Chem. 1984, 62: 2223-2229.
[14] Jay-Gerin J P, Ferradini C. Radiat. Phys. Chem. 1989, 33: 251-253.
[15] Jay-Gerin J P, Ferradini C. J. Chim. Phys. 1994, 91: 173-187.
[16] Muroya Y, Watanabe T, Wu G, et al. Radiat. Phys. Chem. 2001, 60 : 307-312.
[17] Muroya Y, Lin M, Watanabe T, et al. Nucl. Instr. Meth. A, 2002, 489: 554-562.
[18] Muroya Y, Lin M, Iijima H, et al. Res. Chem. Intermed, 2005, 31: 261-272.
[19] Herrmann V, Krebs P J. Phys. Chem. 1995, 99: 6794-6800.
[20] Chandrasekhar N, Krebs P J. Chem. Phys. 2000, 112, 5910-5914.
[21] Buxton G V, Stuart C R. J. Chem. Soc, Faraday Trans, 1995, 91: 279-281.
[22] Muroya Y, Lin M, Wu G, et al. Radiat. Phys. Chem. 2005, 72: 169-172.
[23] Elisei F, Mazzucato U, Görner H, et al. J. Photochem. Photobiol, A: Chemistry, 1989, 50: 209-219.
[24] Simić M, Ebert M. Int. J. Radiat. Phys. Chem. 1971, : 259.
[25] Ferradini C, Jay-Gerin J P. Radiat. Phys. Chem. 1996, 48: 473-480.
[26] Johnson D W, Salmon G A. Radiat. Phys. Chem. 1977, 10: 294-296.
[27] Getoff N, Ritter A, Schwörer F. J. Chem. Soc, Faraday Trans. 1, 1983, 79 : 2389-2404.
[28] Han Z, Katsumura Y, Lin M, et al. Chem. Phys. Lett. 2005, 404: 267-271.
[29] Buxton G V, Greenstock C L, Helman W P, et al. J. Phys. Chem. Ref. Data, 1988, 17, 513.
[30] Wu G, Katsumura Y, Muroya Y, et al. Chem. Phys. Lett. 2000, 325: 531-536.
[31] Soroushian B, Lampre I, Belloni J, et al. Radiat. Phys. Chem. 2005, 72: 111-118.