logo

Kinetics study of the solvated electron decay in THF using laser-synchronised picosecond electron pulse

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Kinetics study of the solvated electron decay in THF using laser-synchronised picosecond electron pulse

Vincent De Waele
Sébastien SORGUES
Pascal PERNOT
Jean-Louis MARIGNIER
Mehran MOSTAFAVI
Nuclear Science and TechniquesVol.18, No.1pp.10-15Published in print 20 Jan 2007
39700

Picosecond pulse radiolysis of neat tetrahydrofuran (THF) shows a fast decay of the solvated electron within 2.5ns. The decay of the solvated electron observed at 790nm is because of spur reaction. A numerical simulation using time dependent Smoluchowski equation containing a sink term with a distance dependent reaction rate is used to fit the pulse-probe data and shows that the geminate reaction can proceed at long distance in this low polar solvent.

Picosecond pulse radiolysisNeat tetrahydrofuran (THF)Laser triggeredPicosecond electron accelerator
References
[1] Bronskill M J, Taylor W B, Wolff R K, et al. Rev. Sci. Instrum. 1970, 41: 333.
[2] Wolff R K, Bronskill M J, Aldrich J E, et al. J. W. J. Phys. Chem. 1973, 77: 1350.
[3] Hunt J W, Wolff R K, Bronskill M J, et al. J. Phys. Chem. 1973, 77: 425.
[4] Sumiyoshi T, Katayama M. Chem. Lett., 1982, 1887.
[5] Jonah C D, Hart E J, Matheson M S. J. Phys. Chem. 1973, 77: 1838.
[6] Jonah C D, Matheson M S, Miller J R, et al.. J. Phys.Chem. 1976, 80: 1267.
[7] Bartels D M, Cook A R, Mudaliar M, et al. J. Phys. Chem. A. 2000, 104: 1686.
[8] Muroya Y, Lin M, Wu G, et al. Radiat. Phys. Chem. 2005, 72, 169.
[9] Buxton GV, Proc R. Soc. London A 1972, 328, 9. and Buxton G V in charged particles and photon interaction with matter (Mozumder A, Hatano Y, Eds). Marcel Dekker, Inc. New York: 2004, 331.
[10] Laverne J A, Pimblott S M. J. Phys. Chem. 1991, 95, 3196 and Pimblott S M, Laverne J A. J. Phys. Chem. 1992, 96, 8904.
[11] Pimblott S M, Laverne J A, Bartels D M., et al. J. Phys. Chem. 1996, 100: 9412.
[12] De Waele V, Sorgue S, Pernot P, et al. Chem. Phys. Lett. 2006, 423, 30.
[13] Hong K M, Noolandi J. Chem. Phys. 1978, 68: 5163, Hong K M, J. Chem. Phys. 1978, 69: 5026.
[14] Sano H, Tachiya M. J. Chem. Phys., 1979, 71: 1276 Tachiya M. Radiat. Phys. Chem. 1987, 30: 75.
[15] Wojcik M, Tachiya M, Tagawa S, et al. in Charged Particles and Photon interaction with matter Eds. A. Mozumder and Y. Hatano. Marcel Dekker, Inc. New York (2004) page 259.
[16] Belloni J, Monard H, Gobert F, et al. Nucl. Instr. Meth., 2005, A539: 527.
[17] Kozawa T, Yoshida Y, Tgawa S. Jpn. Appl. Phys. 2002, 41: 4208.
[18] Salmon G A, Seddon A, Fletcher W. Can. J. Chem. 1974, 52: 3259.
[19] Green N J B, Pilling M J, Pimblott S M, et al. J. Phys. Chem., 1990, 94: 251.
[20] Pimblott S M. J. Phys. Chem., 1991, 95: 6946.
[21] Goulet T, Jay-Gerin J P. J. Chem. Phys., 1992, 96: 5076.
[22] Soroushian B, Lampre I, Pernot P, et al.. Chem. Phys. Lett., 2004, 394: 313.
[23] Martini I B, Barthel E R, Schartz B J. J. Phys. Chem., 2000, 113: 11245.
[24] Murata S, Tachiya M. J. Chim. Phys., 1996, 58: 1577.
[25] Krissinel E. B, Agmon N J. Comput.Chem. 1996, 17: 1085.
[26] Dodelet J P, Freeman G R. Can. J. Chem., 1975, 53: 1265.
[27] Renou F, Pernot P, Bonin J, et al. J. Phys. Chem., A 2003, 107: 6587.
[28] Burel L, Mostafavi M, Murata S, et al. J. Phys. Chem. A., 1999, 103: 5888.