logo

A proteomics analysis for certain signature proteins of rabbit lacrimal passages after 125I seeds brachytherapy

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

A proteomics analysis for certain signature proteins of rabbit lacrimal passages after 125I seeds brachytherapy

LI Dandan
LIU Lin
GAO Shi
JIN Longyun
QI Liangchen
MA Qingjie
Nuclear Science and TechniquesVol.21, No.4pp.227-232Published in print 20 Aug 2010
55900

To search for certain signature proteins and the expression profiles in lacrimal passage stenosis, rabbit models of lacrimal passage stenosis were treated by 125I seed brachytherapy. All the signature proteins were separated by two-dimensional electrophoresis, and identified by mass spectrometry. The results show that the up-regulated proteins are peptidyl-prolyl cis-trans isomerase A (PPIase A), and epidermal fatty acid-binding protein (E-FABP), while the down-regulated proteins are myosin light chain 1(isomer of skeletal muscle), myosin light polypeptide 6 (isomer 1 of smooth muscle and non-muscle), myosin light chain 1(isomer of slow-twitch muscle A), isomer 2 of ERC protein 2, and α-crystallin family protein. The proteins may play a role in healing the wound and regulating synaptic active zone of neurons due to correlation to cell apoptosis, proliferation and migration of smooth muscle cell. These provide molecular mechanism for preventing stenosis and restenosis of lacrimal passage.

Lacrimal passage stenosisRadioactive nuclideProbing of lacrimal passageDifferential expression proteinProteome
References
[1] Zhang X C. Intern J Ophthalmol, 2004, 4: 746-748.
[2] Jin L Y, Zhao Z, Ma Q J. Chin J Gerontology, 2005, 5: 565-566.
[3] Robb R M.Ophthalmol, 1998, 105: 1307-1309.
[4] Gao S, Ma Q J, Cui Q. Chin J Nucl Med, 2006, 26: 378-380.
[5] Tannu N S, Hemby S E. Nat Protoc, 2006, 1: 1732-1742.
[6] Klein M J, Siegal G P, Am J Clin Pathol, 2006, 125: 555-581.
[7] Kern G, Kern D, Schmid F X. FEBS Lett, 1994, 348: 145-148.
[8] Capano M, Virji S, Crompton M. Biochem J, 2002, 363: 29-36.
[9] Leverson J D, Ness S A. Mol Cell, 1998, 1: 203-211.
[10] Fareh J, Martel R, Kermani P. Circulation, 1999, 99: 1477-1484.
[11] Sobue K, Hayashi K, Nishida W. Mol Cell Biochem, 1999, 190: 105-118.
[12] Ohtsuka T, Takao-Rikitsu E, Inoue E. J Cell Biol, 2002, 158: 577-590.
[13] Wang Y, Liu X, Biederer T. Proc Nat Acad Sci USA, 2002, 99: 14464-14469.
[14] Monier S, Jollivet F, Janoueix-Lerosey I. Traffic, 2002, 3: 289-297.
[15] Nakata T, Kitamura Y, Shimizu K. Gene Chromosome Cancer, 1999, 25: 97-103.
[16] Wang Y, Okamoto M, Schmitz F. Nature, 1997, 388: 593-598.
[17] Wang Y, Sugita S, Sudhof T C. J Biol Chem, 2002, 275: 20033-20044.
[18] Jaewon K, Moonseok N, Seho K. J Biol Chem, 2003, 278: 42377-42385.
[19] Kusakari Y, Ogawa E, Owada Y. Mol Cell Biochem, 2006, 284: 183-188.
[20] Chow C W, Herrera Abreu M T, Suzuki T. Am J Respir CellMol, 2003, 29: 427-431.
[21] Bennaars-Eiden A, Higgins L, Hertzel A V. J Biol Chem, 2002, 27: 50693-50702.
[22] Sehroeter M, Jander S, Witte O W. Neurosci, 1999, 59: 1367-1377.
[23] Jochen G, Yoh M, Georg W K. Brain Res Brain Rev, 1995, 20: 269-287.
[24] Zielasek J, Hartung H P. Neuroimmun, 1991, 6: 191-222.
[25] Wiessner C, Brink I, Lorenz P. Neurosci, 1996, 72: 947-958.
[26] Stoll G, Jander S, Sehroeter M. Prog Neurobiol, 1998, 56: 149-171.
[27] Rupalatha M, P V R. Experiment Cell Res, 2005, 306: 203-215.