logo

Simulation of monolithic active pixel sensor with high resistivity epitaxial layer

LOW ENERGY ACCELERATOR AND RADIATION APPLICATIONS

Simulation of monolithic active pixel sensor with high resistivity epitaxial layer

FU Min
TANG Zhenan
Nuclear Science and TechniquesVol.22, No.5pp.265-271Published in print 20 Oct 2011
36800

The time and efficiency of charge collection are the key factors of monolithic active pixel sensor devices for minimum ionizing particles tracking detection. In this paper, 3D models of pixels with different resistivity epitaxial layers (epi-layers) are built and simulated using Synopsys-Sentaurus. The basic characteristics of detectors are evaluated, including electric potential, electric field, and depleted region. Results indicate that the high resistivity (HR) epi-layer is a better choice. Further, simulation results show that the key collection performance is significantly improved owing to a wider and stronger electric field in the N type HR epi-layer.

Monolithic active pixel sensorCharge collectionHigh resistivitySimulation
References
[1] Turchetta R, Berst J D, Casadei B, et al. Nucl Instrum Meth A, 2001, 458: 677-689.
[2] Deptuch G, Berst J D, Claus G, et al. IEEE Trans Nucl Sci, 2002, 49: 601-610.
[3] Ballin J A, Crooks J P, Dauncey P D, et al.

A novel CMOS monolithic active pixel sensor with analog signal processing and 100% fill factor

. IEEE Nucl Sci Sym Conf, Honolulu, US, 2007, 2: 931-935.
Baidu ScholarGoogle Scholar
[4] Dulinski W, Besson A, Claus G, et al. IEEE Trans Nucl Sci, 2007, 54(1): 284-289.
[5] Dulinski W, Berst D, Besson A, et al.

Radiation hardness improved CMOS sensors as particle detectors in high energy physics and medical applications

. IEEE Nucl Sci Symp Conf, Portland, Oregon USA, 2003, 1: 310-314.
Baidu ScholarGoogle Scholar
[6] Heini S, Himmi A, Hu-Guo C, et al. IEEE Trans Nucl Sci, 2009, 56: 346-353.
[7] Deptuch G, Dulinski W, Caccia M, et al. IEEE Trans Nucl Sci, 2005, 52: 1745-1754.
[8] Baudot J, Bertolone G, Brogna A, et al.

First test results of MIMOSA-26, a fast CMOS sensor with integrated zero suppression and digitized output

. IEEE Nucl Sci Symp Conf, Orlando, US, 2009, 1169-1173.
Baidu ScholarGoogle Scholar
[9] Wermes N. IEEE Trans Nucl Sci, 2004, 51(3): 1006-1015.
[10] Deptuch G, Winter M, Dulinski W, et al. Nucl Instrum Meth A, 2001, 465: 92-100.
[11] Buturla E M, Cottrell P E, Grossman M, et al. IBM J Res Dev, 1981, 25: 218-231.
[12] Sentaurus User Guide, Synopsys Inc, 2008.
[13] Kalliopuska J, Eranen S, Orava R.

Simulations of 3D silicon radiation detector structures in 2D and 3D

. IEEE Nucl Sci Symp Conf, Puerto Rico, 2005, 2: 803-807.
Baidu ScholarGoogle Scholar
[14] Pennicard D, Pellegrini G, Lozano M, et al. IEEE Trans Nucl Sci, 2007, 54: 1435-1443.
[15] Husson D. Nucl Instrum Meth A, 2001, 461: 511-513.
[16] Hu-Guo C. Development of fast and high precision CMOS pixel sensors for an ILC vertex detector, IPHC Workshop, France, Mar. 2010.
[17] Deveaux M, Claus G, Deptuch G, et al. Nucl Instrum Meth A, 2003, 512: 71-76.
[18] Fu M, Tang Z, Nucl Instrum Meth A, 2011646: 153-157.
[19] Calvo D, De Remigis P, Osmic F, et al. Nucl Instrum Meth A, 2008, 594: 29-32.
[20] Chen W, De Geronimo G, Li Z, et al. IEEE Trans Nucl Sci, 2002, 49: 1006-1011.