logo

Monte-Carlo simulation of cement neutron field distribution characteristics in PGNAA

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

Monte-Carlo simulation of cement neutron field distribution characteristics in PGNAA

YANG Jianbo
YANG Yigang
LI Yuanjing
TUO Xianguo
LI Zhe
LIU Mingzhe
CHENG Yi
MU Keliang
WANG Lei
Nuclear Science and TechniquesVol.23, No.6pp.337-343Published in print 20 Dec 2012
37600

The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system. Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness. When the cement thickness remains unchanged, the reduced proportion of thermal neutrons increases to a small extent, but the epithermal, intermediate, and fast neutrons will decrease according to the geometric progression. H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements, e.g., O, Ca, 56Fe, Si, and Al. It also slows down the reduction of the fast neutrons via inelastic scattering. O contributes more than other elements in the reduction of fast neutrons. Changing the H content affects the thermal, epithermal, intermediate, and fast neutrons, while changing the Ca, Fe, and Si contents only influences the thermal, epithermal, and intermediate neutrons; hence, there is little effect on the reduction of fast neutrons.

Monte Carlo simulationMCNPPrompt gamma neutron activation analysisNeutron field distributionNeutron flux rate
References
[1] Khang P D, Haia N X, Tana V H, et al. Nucl Instrum Meth Phys Res A, 2011, 634: 47-51.
[2] Naqvi A A, Garwan M A, Maslehuddin M, et al. Appl Radiat Isoto, 2010, 68: 635-638.
[3] Favalli A, Mehner H C, Ciriello V, et al. Appl Radiat Isoto, 2010, 68: 901-904.
[4] Oliveira C, Salgado J, Carvallio F G. J Radioan Nucl Chem, 1997, 216: 191-198.
[5] Naqvi A A. Nucl Instrum Meth Phys Res A, 2003, 511: 400-407.
[6] Naqvi A A, Nagadi M M, Al-Amoudi O S B. Nucl Instrum Meth Phys Res A, 2005, 554: 540-545.
[7] Zhang F, Zhang G L. At Energy Sci Tech, 2006, 40: 480-485.
[8] Yang J B, Tuo X G, Mu K L, et al. At Energy Sci Tech, 2008, 42: 329-332.
[9] Yang J B, Tuo X G, LI Z, et al. Nucl Sci Tech, 2010, 21: 221-226.
[10] Tuo X G, Cheng B, Mu K L, et al. Nucl Sci Tech, 2008, 19: 278-281.
[11] Bai Y F, Wang D Z, MAUERHOFER Eric, et al. Nucl Sci Tech, 2010, 21: 11-15.
[12] Dong X Q, Luo W Y, Yue K, et al. Nucl Sci Tech, 2010, 21: 16-19.
[13] Xia M T, Liu Y Q, Sun X S, et al. Nucl Sci Tech, 2011, 22: 144-150.
[14] Liu Y, Xie T W, Liu Q, et al. Nucl Sci Tech, 2011, 22: 165-173.
[15] Sun H C, Ni B F, Zhang G Y, et al. Nucl Sci Tech, 2011, 22: 287-292.
[16] Feng P, Liu S Y, Wei B, et al. Nucl Sci Tech, 2011, 22: 39-46.
[17] Yang Y G.

Research of on-line multi-element analysis by NIPGA technology (PhD Thesis)

, Beijing: Tsinghua University, 2001.
Baidu ScholarGoogle Scholar
[18] Briesmeister J F. MCNPTM-A general monte carlo N-particle transport Code (4C), Los Alamos, New Mexico: Los Alamos National Laboratory, 2000.