logo

Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China

LI Zhefu
XUE Xiangxin
LIU Sulan
LI Yong
DUAN Peining
Nuclear Science and TechniquesVol.23, No.6pp.344-348Published in print 20 Dec 2012
42803

The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source.

Boron ores from ChinaBoron mole numberFast neutron shielding propertyMonte Carlo methodHalf value layers
References
[1] Faruk D. Appl Radiat Isot, 2010, 68: 175-179.
[2] Atsuhiko M, Sukegawa Y A, Koichi O, et al. J Nucl Mater, 2011, 417: 850-853.
[3] Hayashi T, Tobita K, Nakamori Y, et al. J Nucl Mater, 2009, 386-388: 119-121.
[4] Majid J, Ali M. Radiat Phys Chem, 2008, 77: 523-527.
[5] Atsuhiko M, Shinji S, Koichi O, et al. J Nucl Mater, 2007, 367-370: 1085-1089.
[6] Celli M, Grazzi F, Zoppi M. Nucl Instrum Meth Phys Res A, 2006, 565: 861-863.
[7] Yoshinori S, Akira S, Tooru K. Nucl Instrum Meth Phys Res Sect A, 2004, 522: 455-461.
[8] Atsuhiko M, Satoshi S, Masaharu K, et al. J Nucl Mater, 2004, 329-333: 1619-1623.
[9] Harvinde r S, Kulwant S, Leif G, et al. Nucl Instrum Meth Phys Res B, 2003, 207: 257-262.
[10] Gwaily S E, Hassan H H, Badawy M M, et al. Polym Test, 2002, 21: 513-517.
[11] Gwaily S E, Badawy M M, Hassan H H, et al. Polym Test, 2002, 21: 129-133.
[12] Turgay K, Abdulhalik K, Gökhan B, et al. Appl Radiat Isot, 2012, 70: 341-345.
[13] Turgay K, Adem Ü, Faruk D, et al. Ann Nucl Energy, 2010, 37: 996-998.
[14] El-Khayatt A M. Ann Nucl Energy, 2010, 37: 218-222.
[15] Demet D, Gürbüz K. Nucl Instrum Meth Phys Res B, 2006, 245: 501-504.
[16] Koichi O. Radiat Prot Dosim, 2005, 115: 258-261.
[17] El-Sayed Abdo A. Ann Nucl Energy, 2002, 29: 1977-1988.
[18] Liu S L, Cui C M, Zhang X P. ISIJ Int, 1998, 38: 1077-1079.
[19] Li Z F, Xue X X, Jiang T, et al. Adv Mater Res, 2011, 201-203: 2767-2771.
[20] Li Z F, Xue X X. At Energy Sci Technol, 2011, 45: 1147-1152.
[21] Li Z F, Xue X X. At Energy Sci Technol, 2011, 45: 223-229.
[22] Li Z F, Xue X X. J Northeastern Univ, 2011, 32: 1716-1720.
[23] Li Z F, Xue X X, Jiang T. J Funct Mater, 2010, 41: 1892-1895.
[24] Edward Profio A. Radiation shielding and dosimetry. United States: John Wiley & Sons, Inc, 1979, 13.
[25] Ferrari A, Sala P R, Fassò A, et al. CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.
[26] Giuseppe B, Francesco B, Markus B, et al. Nucl Instrum Meth Phys Res Sect B, 2011, 269: 2850-2856.
[27] Turgay K, Hatun K, Abdulhalik K, et al. Ann Nucl Energy, 2011, 38: 56-59.
[28] İbrahim T, Yüksel Ö, Murat K, et al. Ann Nucl Energy, 2008, 35: 1937-1943.