1. Introduction
The efficiency of a neutron reflector is calculated using the neutron reflection coefficient or neutron albedo. The neutron albedo is the ratio of neutrons reflected back into the reactor to the number of neutrons entering the reflector. Neutron albedo values have been extensively used for measuring neutron reflector effectiveness, analysis of bulk samples, neutron dosimetry, neutron shielding, imaging and detection of explosive materials, and land mines [1-4]. The reflector efficiency is increased by increasing the scattering cross section, and decreases with the absorption cross section of the reflector [5, 6]. Furthermore, the neutron reflection coefficient depends on the elemental composition of the reflector substance, and the geometrical circumstances of the measurement [1]. Other researchers have studied neutron albedo values for different reflector types [3, 7]. Thermal neutron albedo measurements have been carried out for monolithic- and geometry-voided reflectors [8]. The albedo calculation has also been produced for monoenergetic fast neutrons incidented on a variety of materials, and a neutron albedo approximation for intermediate energy neutrons (0.5 eV to 0.2 MeV) has been proposed [9-11]. Formulas have been proposed for calculating thermal neutron albedo [3]. However, few studies have been performed for the thermal neutron albedo of reflectors containing two materials. In this work, the thermal neutron albedo was calculated for different thicknesses of four mono-material reflectors, and saturation thicknesses were obtained for each material. The materials used for mono-material reflectors were water, graphite, lead, and polyethylene. In order to increase the thermal neutron albedo, different thicknesses of the second material were added to the first. The thermal neutron albedo equation for a bi-material reflector was obtained by using the neutron diffusion equation. The thermal neutron albedo for mono-material and bi-material reflectors was also measured using a setup that consisted of a 5.2 Ci neutron source, BF3 neutron detector, cadmium as neutron absorber, and water as neutron moderator.
2. Theoretical aspects
2.1. Albedo of a mono-material reflector
The neutron albedo of a reflector is defined as a ratio of neutron currents exiting the reflector (
The neutron albedo of an infinite plate is expressed as [12]
where a is the thickness of the plate, and D and L are the diffusion coefficient and diffusion length, respectively, which are given by:
and
Thermal neutron cross sections were derived from Lamarsh [13] and Sears [14] for calculation of the thermal neutron albedo using Eq. (2). Then, D and L were calculated according to Eqs. (3) and (4) for water, graphite, lead, and polyethylene as mono-material reflectors. Eq. (2) was used for an infinite plate along the y- and z-axes, and placed between planes
where
The
2.2. Albedo of a bi-material reflector
The neutron albedo of two infinite plates with two different materials was calculated by the diffusion equation. The first reflector was located between
The neutron fluxes of two reflectors are expressed according to
where the neutron fluxes remain finite as
Therefore, the constants A1, A2, and A3 in the flux equations can be calculated using Eqs. (10) and (11) as:
where D and L are the diffusion coefficient and diffusion length, respectively, for the first and the second reflector according to the defined indices. Thus
Therefore, the neutron albedo for a bi-material reflector yields the following equation:
The thermal neutron albedo is obtained from Eq. (16) for a bi-material reflector. Similar to the corrected thermal neutron albedo equation for a mono-material reflector, Eq. (16) is improved by the function
where
where the b1, b2, and b3 coefficients in Eq. (18) were obtained via fitting the experimental data of the thermal neutron albedo.
2.3. Decline rate of reflector in high flux reactor
Flux can be considerably affected by the absorption of neutrons in a high flux reactor and therefore the absorption cross section of an ideal reflector should be small and the decline rate of a reflector should be calculated. In ordinary flux, the decline value of a reflector is negligible. The thermal flux density is approximately 1015 neutrons/cm2 s1 in the high flux reactor [15]. The interaction rate per unit volume of a reflector is obtained using the equation below [13]:
where
where
3. Experimental procedures
A 5.2 Ci 241Am-Be source was located in a container filled with water 10 cm away from one of the container walls. Water, as fast neutron moderator, can produce thermal neutron current. A BF3 detector (2.5 cm in diameter and 20 cm in length) was placed at 14 cm distance from the neutron source. In order to prevent the direct interaction of thermal neutrons with the detector, a cadmium sheet with dimension 23 cm × 31 cm × 0.4 cm was placed between the source and the detector. Thus, only the thermal neutron current reflecting through the reflector could be detected (
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F001.jpg)
4. Results and discussion
The theoretical and experimental results of thermal neutron albedo measurements are shown in Fig. 2 as a function of reflector thickness with line and scatter curves, respectively. The thermal neutron albedo of the mono-material reflectors was obtained using Eqs. (1) and (5). The values of a1, a2, and a3 are shown in Table 1. Also,
Material | a1 | a2 | a3 |
---|---|---|---|
Water | 2.3449 | 0.5564 | 0.7363 |
Graphite | -1.9347 | 2.7155 | 2.1458 |
Lead | -1.3703 | 1.9580 | 1.4306 |
Polyethylene | 2.2273 | 0.5363 | 0.1657 |
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F002.jpg)
According to Fig. 2, thermal neutron albedo increases with reflector thickness before reaching saturation at what is called the "saturation thickness". Saturation thickness is 7 cm, 16 cm, 10 cm, and 8 cm for water, graphite, lead, and polyethylene reflectors, respectively. The maximum observed value of thermal neutron albedo was for polyethylene due to its high hydrogen content. Water, graphite, and lead reflectors had the lower subsequent values of thermal neutron albedo, respectively. Under identical geometric conditions, thermal neutron reflection depends on the hydrogenous components and atomic number of reflector materials. Therefore, thermal neutrons albedo reaches a maximum for the polyethylene reflector. However, water is used more than polyethylene as a neutron reflector for thermal reactors because of safety aspects. Lead reflectors are also used for fast reactors because of the low neutron spectral shift [10]. The thermal neutron albedo for binary combinations of reflectors are shown in Figs. 3, 4, 5 and 6 as a function of reflector thickness. The values of b1, b2, and b3 are shown in Table 2. The first material is fixed at saturation thickness, and the second material with different thicknesses are added to the first reflector. Thermal neutrons are reflected from two successive diffusing districts in the bi-material reflector.
Material | b1 | b2 | b3 |
---|---|---|---|
Water-Graphite | 4.0672 | 0.8540 | 0.8835 |
Water-Polyethylene | 2.1547E4 | 2.1895E-6 | -2.1545E4 |
Water-Lead | 0.5045 | 0.2115 | 0.8360 |
Graphite-Water | -3.2140 | 2.5575 | 2.8016 |
Graphite-Polyethylene | -2.3922E13 | 1.0731E2 | 1.5899 |
Graphite-Lead | 1.8267 | 2.4817 | 1.2907 |
Lead-Water | 1.8267 | 2.4817 | 1.2907 |
Lead-Polyethylene | 1.09116 | 0.8543 | 0.9168 |
Lead-Graphite | -1.4427 | 1.8427 | 1.4315 |
Polyethylene-Water | -0.0015 | -0.4781 | 0.4076 |
Polyethylene-Graphite | -0.0273 | -0.1094 | 4.6663 |
Polyethylene-Lead | -4.3940E-4 | -0.4937 | 0.4227 |
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F003.jpg)
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F004.jpg)
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F005.jpg)
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F006.jpg)
According Figs. 3-6, the thermal neutron albedo is increased by adding the second material with the condition that the reflection coefficient for the first material is lower than the reflection coefficient for the second material. In this circumstance, neutron currents exiting the reflector (
Thermal neutron absorption cross sections are related to the (n,γ) reaction in water, graphite, lead, and polyethylene reflectors. However, there is the (n,n+A) reaction for lead reflectors, which is negligible (10-20 barn). Cross sections of natural isotopes of lead, carbon, oxygen, and hydrogen were extracted from the Evaluated Nuclear Data File [16]. Then, decline percentages of reflectors were obtained for the high fluxes according to Eq. (21). The decline percentages per unit volume for the reflectors used are shown in Fig. 7 as a function of time. The basic materials of reflectors are reduced, and the absorption reaction products are increased such that these variations are proportional to the decline percentage of reflectors. Therefore, the cross sections of reflectors and, consequently, the neutron albedo are changed. Cross sections of the (n,γ) reaction products were also extracted from the Evaluated Nuclear Data File for water, graphite, lead, and polyethylene reflectors [16]. Then, the neutron albedo coefficients were calculated (Eq. (5)) by considering the decline values and the variation of reflector cross sections. The variation in the percentage of neutron albedo for polyethylene, water, graphite, and lead reflectors are shown in Table 3.
Material | Decline percentage | Albedo variation percentage |
---|---|---|
Water | 4.1832 | 0.0460 |
Graphite | 0.0220 | 0.0013 |
Lead | 1.0773 | 0.2623 |
Polyethylene | 8.4105 | 0.1812 |
-201809/1001-8042-29-09-009/alternativeImage/1001-8042-29-09-009-F007.jpg)
According to Fig. 7, the decline values of water, graphite, lead, and polyethylene reflectors increase over time. Graphite has a low-absorption cross section for thermal neutrons (0.0035 barn), and its decline value was constant. The absorption cross section for thermal neutrons s 0.171 barn for the lead reflector so, the variation of decline value was low. Polyethylene and water reflectors had somewhat high variation of decline values, because thermal neutrons have an absorption cross section of 0.3320 barn for hydrogen. The thermal neutron albedo coefficients in high flux reactor are changed slightly for water, graphite, lead, and polyethylene reflectors. These values are negligible even after two years, as shown in Table 3. Therefore, the thermal neutron reflection coefficients are not changed in the high flux reactors. Previous works have reported an experimentally-derived thermal neutron albedo equal to 0.80 ± 0.024 for water [8]. Also, albedo coefficients have been obtained as 0.80 and 0.94 for water and graphite reflectors, respectively [12]. These values are for the saturation thicknesses, and have been calculated using neutron diffusion theory. We have found that these values agree with our results. It is worth noting that thermal neutron albedo has not been investigated previously for the binary combinations we used. There is also reasonable agreement between the theoretical and experimental values, and the simulation results derived using MCNPX code.
5. Conclusion
Reasonable agreements were found between the theoretical and the experimental results of thermal neutron albedo calculated using the selected functions for mono-material and bi-material reflectors. The obtained thermal neutron albedo values were 0.86 ± 0.02 for water-polyethylene, 0.84± 0.02 for graphite-polyethylene, 0.95 ± 0.02 for polyethylene-water, and 0.66 ± 0.02 for lead-graphite combinations. The results show that thermal neutron albedo depends on the material type and thickness of reflectors. Additionally, when the thermal neutron reflection coefficient of the first layer of a reflector is lower than that of the second layer, the thermal neutron albedo increases with added thickness of the second layer. Finally, use of bi-material reflectors could be effective for neutron shielding. If lead is used as one of the materials in bi-material reflectors, it could also shield against gamma rays.
The concept of the reflection cross section of thermal neutrons
. Appl. Radiat. Isotopes 50, 487-490 (1999). doi: 10.1016/S0969-8043(98)00077-3A neutron Albedo system with time rejection for landmine and IED detection
. Nucl. Instrum. Meth. A 652, 84-89 (2011). doi: 10.1016/j.nima.2010.09.038Thermal neutron albedo and diffusion parameter measurements for monolithic and geometric voided reflectors
. Radiat. Meas 41 89-94 (2006). doi: 10.1016/j.radmeas.2005.03.005Design and simulation of time-of-flight neutron reflectometer
. Nucl. Sci. Tech 21 157-160 (2010). doi: 10.13538/j.1001-8042/nst.21.157-160Study the effects of different reflector types on the neutronic parameters of the 10 MW MTR reactor using the MCNP4C code
. Ann. Nucl. Energy 85 1115-1118 (2015). doi: 10.1016/j.anucene.2015.07.029Optimal configuration of neutron reflector in He-cooled molten Li blanket
. Fusion. Eng. Des. 81 729-732 (2006). doi: 10.1016/j.fusengdes.2005.05.008Geometrical effects on thermal neutron reflection of hydrogenous moderators using 241Am-Be source
. Appl. Radiat. Isotopes 55, 175-179 (2001). doi: 10.1016/S0969-8043(00)00386-9.A new approximation for the neutron albedo
. Nucl. Sci. Eng 155 1-17 (2007). doi: 10.13182/NSE07-A2641Investigation of reflection properties of applied reflectors for thermal neutrons by considering the albedo and spectral shift
. Prog. Nucl. Energ 100 192-196 (2017). doi: 10.1016/j.pnucene.2017.06.011Neutronics analysis of the target-moderator-reflector (TMR) configuration for compact long pulsed neutron sources
. Nucl. Eng. Des 241 4720-4725 (2011). doi: 10.1016/j.nucengdes.2011.02.032Neutron scattering lengths and cross section
. Neutron News 3 26-37 (1992). doi: 10.1080/10448639208218770Evaluated Nuclear Data File
. A computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center.