logo

Nonlinear feedback synchronization of hyperchaos in higher dimensional systems

Nonlinear feedback synchronization of hyperchaos in higher dimensional systems

Fang Jin-Qing
Ali M K
Nuclear Science and TechniquesVol.8, No.4pp.193-199Published in print 01 Nov 1997
23100

Nonlinear feedback functional method is presented to realize synchronization of hyperchaos in higher dimensional systems. New nonlinear feedback functions and superpositions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos. The robustness of the method based on the flexibility of choices of feedback functions is discussed. By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional systems, such as Lorenz system, Van der Pol oscillator, Duffing oscillator and Rössler system, ten dimensional hyperchaotic systems are formed as the model systems. It can be found that there is not any noticeable difference in synchronization based on the numbers of positive Lyapunov exponents and of dimensions.

HyperchaosSynchronizationNonlinear feedback functionsTen-dimension.
References
1 Kapitanial T, Chua L. Inter J Bifurcation and Chaos, 1994; 4: 477
2 Lai Y C, Grebogi C. Phys Rev, 1994; 50E: 1894
3 Fang Jin-Qing. Chinese Science Bulletin, 1995: 40: 988
4 Fang Jin-Qing. Chi J Nucl Phys, 1996; 18: 182
5 Fang Jin-Qing. Chi J Nucl Phys, 1996; 18: 244
6 Fang Jin-Qing. Chi J Nucl Phys, 1997; 19: 63
7 Kocaver L, Parlitz U. Phys Rev Lett, 1995; 74: 5028
8 Shinbrot T. Advances in Physics, 1995; 44: 173
9 Fang Jin-Qing. Progress in Physics (in Chinese), 1996; 16: 1
10 Fang Jin-Qing. Progress in Physics (in Chinese), 1996; 16: 137
11 Pen J H, Ding E J, Ding M et al. Phys Rev Lett, 1996; 76: 904
12 Ali M K, Fang Jin-Qing. Phys Rev, 1997; 55E: 5285
13 Ali M K, Fang Jin-Qing.

Discrete dynamics in nature and society

, Phys Rev E, October, 1997
Baidu ScholarGoogle Scholar
14 Fang Jin-Qing, Ali M K. Nucl Sci Tech, 1997; 8: 129
15 Crawford J Q. J Stat Phys, 1995; 74: 4341
16 Schuster H G, Niebur E, Hunt E R et al. Phys Rev Lett, 1996; 76: 400
17 Pecora L, Carrol T. Phys Rev Lett, 1990; 64: 1196
18 Carrol T, Pecora L. IEEE Trans Circuits and Systems, 1991; 38: 453
19 Guemez J, Matias M A. Phys Rev E, 1995; 52: R2145
20 Guemez J, Matias M A. Phys Rev E, 1996; 53: 3059
21 Wiesenfeld K, Colet Pere, Strogatz Steven H. Phys Rev Lett, 1996; 76: 404
22 Chua L O, Kocarev L, Eckert K et al. Inter J Bifurcation and Chaos, 1992; 2: 705
23 Pyragas K. Phys Lett A, 1992: 170: 421
24 Chen G, Dong X. IEEE Trans Circuits and Systems, 1993; 40: 591
25 Dong X, Chen G. Proc of American Control Conf, Chicago, IL, June, 1992; 2234
26 Hu G, Qu Z L, He K. Inter J Bifurcation and Chaos, 1995; 5: 901
27 Qu Z L, Hu G. Phys Rev E, 1993; 49: 1099
28 Qu Z L, Hu G. Phys Lett A, 1993; 178: 265
29 Qu Z L, Hu G. Phys Rev Lett, 1994; 74: 1736