logo

Non-FDG PET imaging of brain tumors

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Non-FDG PET imaging of brain tumors

HUANG Zemin
GUAN Yihui
ZUO Chuantao
ZHANG Zhengwei
XUE Fangping
LIN Xiangtong
Nuclear Science and TechniquesVol.18, No.3pp.154-158Published in print 20 Jun 2007
31300

Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers: amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

Positron emission tomographyBrain tumorNon-FDG
References
[1] Chung J K, Kim Y K, Kim S K, et al. Eur J Nucl Med Mol Imaging, 2002, 29(2): 176-182.
[2] Herholz K, Holzer T, Bauer B, et al. Neurology, 1998, 50: 1321-1322.
[3] Ishiwata K, Enomoto K, Sasaki T, et al. J Nucl Med, 1996, 37: 279-285.
[4] Langen K J, Muhlensiepen H, Holschbach M, et al. J Nucl Med, 2000, 41: 1250-1255.
[5] Kracht L W, Friese M, Herholz K, et al. Eur J Nucl Med Mol Imaging, 2003, 30: 868-873.
[6] Sato N, Suzuki M, Kuwata N, et al. Neurosurg Rev, 1999, 22: 210-214.
[7] Iuchi T, Iwadate Y, Namba H, et al. Neurol Res, 1999, 21(7): 640-644.
[8] Giammarile F, Cinotti LE, Jouvet A, et al. J Neurooncol, 2004, 68(3): 263-274.
[9] Sunada I, Tsuyuguchi N, Hara M, et al. Radiation Medicine, 2002, 20(2): 97-100.
[10] Jacobs A. Stroke, 1995, 26: 1859-1866.
[11] Rau F C, Weber W A, Wester H-J, et al. Eur J Nucl Med, 2002, 29: 1039-1046.
[12] Kaim A H, Weber B, Kurrer M O, et al. Eur J Nucl Med, 2002, 29: 648-654.
[13] Weber W A, Wester H-J, Grosu A L, et al. Eur J Nucl Med Mol Imaging, 2000, 27(5): 542-549.
[14] Frank W F, Dirk P, Hans-Jörg W, et al. J Neurosurg, 2005, 102: 318-327.
[15] Pauleit D, Stoffels G, Schaden W, et al. J Nucl Med, 2005, 46(3): 411-416.
[16] Ohtani T, Kurihara H, Ishiuchi S, et al. Eur J Nucl Med, 2001, 28: 1664-1670.
[17] Kwee SA, Coel MN, Lim J, et al. J Neuroimaging, 2004, 14: 285-289.
[18] Tian Mei, Zhang Hong, Oriuchi N, et al. Eur J Nucl Med Mol Imaging, 2004, 31: 1064-1072.
[19] Zhang H, Tian M, Oriuchi N, et al. Nucl Med Commun, 2003, 24: 273-279.
[20] Kong X B, Zhu Q Y, Vidal P M, et al. Antimicrob Agents Chemother, 1992, 36: 808-818.
[21] Sherley J L, Kelly T J. J Biol Chem, 1988, 263: 8350-8358.
[22] Hengstschlager M, Knofler M, Mullner E W, et al. J Biol Chem, 1994, 269: 13836-13842.
[23] Toyohara J, Waki A, Takamatsu S, et al. Nucl Med Biol, 2002, 29: 281-287.
[24] Rasey J S, Grierson J R, Wiens L W, et al. J Nucl Med, 2002, 43: 1210-1217.
[25] Chen W, Cloughesy T, Kamdar N, et al. J Nucl Med, 2005, 46(6): 945-952.
[26] Jacobs A H, Thomas A, Kracht L W, et al. J Nucl Med, 2005, 46(12): 1948-1958.
[27] Pirotte B, Goldman S, Massager N, et al. J Neurosurg, 2004, 101(3): 476-483.
[28] Pirotte B, Goldman S, Massager N, et al. J Nucl Med, 2004, 45(8): 1293-1298.
[29] Grosu A L, Weber W A, Franz M, et al. Int J Radiat Oncol Biol Phys, 2005, 63(2): 511-519.
[30] Ribom D, Engler H, Blomquist E, et al. Eur J Nucl Med Mol Imaging, 2002, 29(5): 632-640.
[31] Kim S, Chung J K, Im S H, et al. Eur J Nucl Med Mol Imaging, 2005, 32(1): 52-59.
[32] Van Laere K, Ceyssens S, Van Calenbergh F, et al. Eur J Nucl Med Mol Imaging, 2005, 32(1): 39-51.
[33] Walter R, Claudia G, Gabriele P, et al. Neurosurgery, 2005, 57: 505-511.