Shear viscosity to entropy density ratio in BUU transport model

NUCLEAR, HEAVY ION AND ATOMIC PHYSICS

Shear viscosity to entropy density ratio in BUU transport model

LI Shaoxin
FANG Deqing
MA Yugang
ZHOU Chenglong
Nuclear Science and TechniquesVol.22, No.4pp.235-239Published in print 20 Aug 2011
6400

Shear viscosity (η) is a basic transport coefficient of the medium. In this work, we calculate shear viscosity to entropy density ratio (η/S) of an equilibrated system in intermediate energy heavy ion collisions within the framework of the Boltzmann-Uehling-Uhlenbeck model (BUU) model. After the equilibration of Au + Au system at central collision in a fixed volume is reached, temperature, pressure and energy density are extracted by the phase space information and then η/S is calculated using the Green-Kubo formulas. The results show that η/S drops with the incident energy and its value is not so drastically different from the RHIC results.

BUU modelLiquid-gas phase transitionShear viscosityEntropy densityη/S
References
[1] Natowitz J B, Wada R, Hagel K, et al. Phys Rev, 2002, C65: 034618(1-9).
[2] Pochodzalla J, Möhlenkamp T, Rubehn T, et al. Phys Rev Lett, 1995, 75: 1040-1043.
[3] Ma Y G, Natowitz J B, Wada R, et al. (NIMROD Collaboration), Phys Rev, 2005, C71: 054606(1-23).
[4] Ma Y G. Phys Rev Lett, 1999, 83: 3617-3620.
[5] Borderie B, Rivet M F. Prog Part Nucl Phys 2008, 61: 551-601.
[6] Bonasera A, Bruno M, Dorso C O, et al. Nuovo Cimento, 2000, 23: 1-101.
[7] Ma Y G, Shen W Q, Nucl Sci Tech, 2004, 15: 4-29.
[8] Brown F R, Butler F P, Chen H, et al. Phys Rev Lett, 1990, 65: 2491-2494.
[9] Arsene I, Bearden I G, Beavis D, et al. Nucl Phys, 2005, A757: 1-27.
[10] Back B B, Baker M D, Ballintijn M, et al. (PHOBOS Collaboration), Nucl Phys, 2005, A757: 28-183.
[11] Adams J, Aggarwal M, Ahammed Zet al. (STAR Collaboration), Nucl Phys, 2005, A757: 102-183.
[12] S. Adcox S, Adler S S, Afanasiev Set al. (PHENIX Collaboration), Nucl Phys, 2005, A757: 184-284.
[13] Demir N, Bass S A. Phys Rev Lett, 2009, 102: 172302(1-4).
[14] Lacey R, Ajitanand N N, Alexander J M, et al. Phys Rev Lett, 2007, 98: 092301(1-4).
[15] Danielewicz P. Phys Lett., 1984, B146: 168-175.
[16] Shi L, Danielewicz P. Phys Rev, 2003, C68: 064604(1-17).
[17] Pal S. Phys Rev, 2010, C81: 051601(R1-R5).
[18] Auerbach N, Shlomo S. Phys Rev Lett, 2009, 103: 172501(1-4).
[19] Wong C Y, Tang H K. Phys Rev Lett, 1978, 40: 1070-1073.
[20] Bertsch G F, Michigan State University Cyclotron Laboratory preprint, MSUCL-544 (1985).
[21] Bauer W, Bertsch G F, Cassing W, et al. Phys Rev, 1986, C34: 2127-2133.
[22] Wuenschel S, Bonasera A, Maya L W, et al. Nucl Phys, 2010, A843:1-13.
[23] Zheng H, Bonasera A. Phys Lett, 2011, B696: 178-181.
[24] Muronga A. Phys Rev, 2004, C69: 04491(1-7).
[25] Baym G, Monien H, Pethick C J, et al. Phys Rev Lett, 1990, 64: 1867-1870.
[26] Baym G, Heiselberg H. Phys Rev, 1997, D56: 5254-5259.
[27] Erpenbeck J J. Phys Rev, 1989, A39: 4718-4731.
[28] Sasaki N, Miyamura O, Muroya S, et al. Europhys Lett, 2001, 54: 38-44.
[29] Kubo R. Rep Prog Phys, 1966, 29: 255-284.
[30] Muronga A. Phys Rev, 2004, C69: 044901(1-7).
[31] Konopka J, Graf H, Stöcker H, et al. Phys Rev, 1994, C50: 2085-2095.
[32] Kovtun P K, Son D T, Starinets A O. Phys Rev Lett, 2005, 94: 111601(1-4).
[33] Policastro G, Son D T, Starinets A O. Phys Rev Lett, 2001, 87: 081601(1-4).
[34] Song H C, Bass S A, Heinz U, et al. Phys Rev Lett, 2011, 106: 192301(1-4).