logo

2D and 3D refraction-based visualization of breast cancer for early clinical check

SYNCHROTRON TECHNOLOGY AND APPLICATIONS

2D and 3D refraction-based visualization of breast cancer for early clinical check

Masami ANDO
Anton MAKSIMENKO
Tetsuya YUASA
Eiko HASHIMOTO
Katsuhito YAMASAKI
Shu IHIHARA
Hiroshi SUGIYAMA
Tokiko ENDO
LI Gang
CHEN Zhihua
Kazuyuki HYODO
Ei UENO
Nuclear Science and TechniquesVol.17, No.6pp.389-395Published in print 20 Dec 2006
31500

Ductal carcinoma in-situ (DCIS) has been visualized by 2D XDFI (X-ray dark-field imaging) and further by a 3D X-ray CT, and the data was acquired by the X-ray optics DEI (diffraction-enhanced imaging). A newly made algorithm was used for CT. Data of 900 projections with interval of 0.2 degrees were used. Ductus lactiferi, microcalcification in a 3D form have been clearly visible. The spatial resolution available was approximately 30 μm.

X-ray dark-field imaging (XDFI)Ductal carcinoma in-situ (DCIS)Diffraction-enhanced imaging (DEI)Microcalcification3D CTSynchrotron radiationVertical wigglerX-ray refractionMonochrocollimator
References
[1] Hashimoto H, Clinical Imagiology, 2002, 9:937.
[2] Burattini E, Cossu E, Di Maggio C, et al. Radiology, 1995, 195:239.
[3] Johnston R E, Washburn D, Pisano E, et al. Radiology. 1996, 200:659.
[4] Chapman D, Pisano E, Thomlinson W, et al. Breast Disease. 1998, 10:197.
[5] Di Michiel M et al. in: Medical Applications of Synchrotron Radiation, Ando M and Uyama C (eds.), Tokyo: Springer-Verlag, 1998:78.
[6] Arfelli F et al. Radiology. 2000, 215:286.
[7] Hasnah M O, Zhong Z, Oltulu O, et al. Med. Phys. 2002, 29:2216.
[8] Takeda T, Wu J, Tsuchiya Y, et al. J. J. Appl. Phys. 2004, 43:5652.
[9] Toyofuku F, Higashida Y, Tokumori K, et al. J. J. Med. Phys. 2003, 23(Supp.3): 127.
[10] Toyofuku F, Higashida Y, Tokumori K, et al. J. J. Med. Phys. 2004, 24(Supp.3): 378.
[11] Ando M, Sugiyama H, Maksimenko A, et al. Jpn. J. Appl. Phys. 2002, 41:L1016.
[12] Ando M, Yamasaki K, Toyofuku F, et al. Jpn. J. Appl. Phys. 2005, 44:L528.
[13] Ando M, Yamasaki K, Ohbayashi C, et al. Jpn. J. Appl. Phys. 2005, 44:L998.
[14] Podurets K M, Somenkov V A, Shil’shtein S Sh, Physica. 1989, B156-157:691.
[15] Ingal V N, Beliaevskaya E A, J. Phys. D: Appl. Phys. 1995, 28:2314.
[16] Davis T J, Gao D, Gureyev T E, et al. Nature. 1995, 373:595.
[17] Chapman D, Thomlinson W, Johnston R E, et al. Phys. Med. Biol. 1997, 42:2015.
[18] Yagi N, Suzuki Y, Umetani K, et al. Med. Phys. 1999, 26:2190.
[19] Momose A, Takeda T, Itai Y, et al. Nature Medicine. 1996, 2:1434.
[20] Hirano K, Maksimenko A, Sugiyama H, et al. Jpn. J. Appl. Phys. 2002, 41:L595.
[21] Maksimenko A, Sugiyama H, Hirano K, et al. Measurement Science and Technology. 2004, 15:1251.
[22] Maksimenko A, Ando M, Sugiyama H, et al. Appl. Phys. Lett. 2005, 86:124105-1.
[23] Maksimenko A, Ando M, Sugiyama H, et al. Jpn. J. Appl. Phys. 2005, 44:L633.
[24] Yuasa T, Maksimenko A, Hashimoto E, et al. Optics Letters. 2006, 31:1818.
[25] Yuasa T, Sugiyama H, Zhong Z, et al. JOSA. 2005, 22:2622.
[26] Kaka A C, Slaney M, Principles of computerized tomographic imaging, New York: IEEE Press, 1988.
[27] Kohra K, J. Phys. Soc. Jpn. 1962, 17:589.
[28] Ando M, Maksimenko A, Yuasa T, et al. Bioimages. 2006, 13 :1.
[29] Hashimoto E, Maksimenko A, Sugiyama H, et al. Zoological Society. 2006, 23 :in press.
[30] Yuasa T, Hashimoto E, Maksimenko A, et al. submitted.
[31] Ando M, Maksimenko A, Hashimoto E, et al. submitted.
[32] Sadowsky N L, Semine A, Harris J R, Cancer. 1990, 65 :2113.
[33] Gluck B S, Dershaw D D, Liberman L, et al. Radiology 1993, 188:469.
[34] Marrow M, Schmidt R, Hassett C, Surgery. 1995, 118:621.