logo

Low-alpha optics design for SSRF

SYNCHROTRON SCIENCE AND TECHNOLOGY

Low-alpha optics design for SSRF

WANG Xin
TIAN Shunqiang
LIU Guimin
Nuclear Science and TechniquesVol.21, No.3pp.134-140Published in print 20 Jun 2010
36900

In this paper, short pulse radiation in Shanghai Synchrotron Radiation Facility (SSRF) is generated by the low momentum compaction factor (αC) optics, and three kinds of the low-αC optics are found, with the very low αC being adopted by reducing dispersion in the straight section to negative value in the SSRF. Energy acceptance is selected as objective functions in nonlinear optimization rather than the second order αC or other nonlinear driving terms. The optimal result is improved step-by-step by randomly setting harmonic sextupole strengths. Two optics modes, i.e. low positive αC and low negative αC, are analyzed. In order to get a large energy acceptance and only one stable point in longitudinal phase space, the low negative αC optics is taken as an operation mode for the short pulse radiation in the SSRF.

SSRFlow-αCbeam optics designnonlinear optimizationand energy acceptance
References
[1] Müller A S, Birkel I, Huttel E, et al.

Beam studies with coherent synchrotron radiation from short bunches length in the ANKA storage ring

. In: Proceedings of EPAC. Edinburgh, Scotland: 2006, 2868-2870.
Baidu ScholarGoogle Scholar
[2] Müller A S, Birkel I, Casalbuoni S, et al.

Characterizing THz coherent synchrotron radiation at the ANKA storage ring

. In: Proceedings of EPAC. Genoa, Italy: 2008, 2091-2093.
Baidu ScholarGoogle Scholar
[3] Abo-Bakr M, Feikes J, Holldack K, et al. Phys Rev Lett, 2002, 88: 254801.
[4] Hama H, Takano S, Isoyama G. Nucl Instrum Methods Phys Res A, 1993, 329: 29-36.
[5] Wüstefeld G.

Short bunches in electron storage rings and coherent synchrotron radiation

. In: Proceedings of EPAC. Genoa, Italy: 2008, 26-30.
Baidu ScholarGoogle Scholar
[6] Zholents A A, Zolotorev M. Phys Rev Lett, 1996, 76: 912-915.
[7] Zholents A A, Heimann P, Zolotorev M, et al. Nucl Instrum Methods Phys Res A, 1999, 425: 385-389.
[8] Feikes J, Holldack K, Kuske P, et al.

Sub-picosecond electron bunches in the BESSY storage ring

. In: Proceedings of EPAC2004, Lucerne, Switzerland, 2004: 1954-1956.
Feikes J, Holldack K, Kuske P, et al.

Compressed electron bunches for Thz generation operating BESYY II in a dedicated low alpha mode

. In: Proceedings of EPAC2004, Lucerne, Switzerland, 2004: 2290-2292.
Baidu ScholarGoogle Scholar
[9] Huang X B, Safranek J, Corbett J, et al.

Low alpha mode for SPEAR3

. In: Proceedings of PAC2007, Albuquerque, New Mexico, USA, 2009: 1308-1310.
Baidu ScholarGoogle Scholar
[10] Nadji A.

Beam dynamics in low alpha experiments at SOLEIL

. In: the 2nd nonlinear beam dynamics workshop. Oxford, UK, 2009.
Baidu ScholarGoogle Scholar
[11] Martin I P S, Bartolini R, Rowland J, et al.

A low momentum compaction lattice for the DIAMOND storage ring

. In: Proceedings of PAC2009. Vancouver, BC, Canada, 2009: TH6PFP032.
Baidu ScholarGoogle Scholar
[12] Abreu N P, Boge M, Muller F, et al.

Low-alpha operation of the SLS storage ring

. In: Proceedings of PAC2009. Vancouver, BC, Canada, 2009: WE5RFP010.
Baidu ScholarGoogle Scholar
[13] Zhao Z T, Xu H J, Ding H.

Commissioning of the Shanghai light source

. In: Proceedings of PAC2009, Vancouver, BC, Canada, 2009: MO3PBI04.
Baidu ScholarGoogle Scholar
[14] Yang L Y, Robin , Sannibale D F, et al. Nucl Instru Meth. 2009, A609: 50-57.
[15] Tian S Q. Chin Phys C, 2010, 34(7): 1009-1015.
[16] Tian S Q, Liu G M, Li H H, et al. Chin Phys C, 2009, 33(3): 224-231.
[17] Robin D, Forest E, Pellegrini C, et al. Phys Rev E, 1993, 48(3): 2149-2156.