logo

Cu2O nanoparticles: Radiation synthesis, and photocatalytic activity

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

Cu2O nanoparticles: Radiation synthesis, and photocatalytic activity

LIN Xiangfeng
ZHOU Ruimin
SHENG Xiaohai
ZHANG Jianqiang
Nuclear Science and TechniquesVol.21, No.3pp.146-151Published in print 20 Jun 2010
40000

Cu2O nanocrystals were synthesized by irradiating an aqueous solution of CuSO4·5H2O (1.25g), polyvinyl alcohol (PVA, 0.8 g), and isopropanol (3.1 mL). The products were characterized by powder XRD, TEM and SEM. Methyl orange degradation under visible light using the Cu2O nanocrystals as catalyst was studied by UV-Vis absorption method. The results show that the products are nanocrystals of pure Cu2O. Morphology and size of the nanoparticles are affected by the irradiation dose and pH value of the initial solution. Octahedral Cu2O nanocrystals of 116 nm in size can be obtained at the initial pH of 8.0 and 280-kGy irradiation. The nanocrystals have excellent catalytic activity for photodegradation of the methyl orange solution bubbled at the air-flow rate of 750 mL·min–1, due to the large {111} facets of octahedral Cu2O particles.

E-beam irradiationCuprous oxideNanoparticlesPhotodegradation
References
[1] Hara M, Kondo T, Komoda M, et al. Chem Commun, 1998, 3: 357-358.
[2] Musa A O, Akomolafe T, Carter M J. Sol Energy Mater Sol Cells, 1998, 51: 305-316.
[3] Tang B X, Wang F, Li J H, et al. J Org Chem, 2007, 72: 6294-6297.
[4] Zhang J, Liu J, Peng Q, et al. Chem. Mater, 2006, 18: 867-871.
[5] Zhang H, Zhu Q, Zhang Y, et al. Adv Funct Mater, 2007, 17: 2766-2771.
[6] White B, Yin M, Hall A, et al. Nano Lett, 2006, 6: 2095-2098.
[7] Wang W Z, Wang G H, Wang X S. Adv Mater, 2002, 14: 67-69.
[8] Sun F, Guo Y P, Song WB, et al. J Cryst Growth, 2007, 304: 425-429.
[9] Wu Z C, Shao M W, Zhang W, et al. J Cryst Growth, 2004, 260: 490-493.
[10] Chen Q D, Shen X H, Gao H C. J Colloid Interf Sci, 2007, 312: 272-278.
[11] He P, Shen X H, Gao H C. J Colloid Interf Sci, 2005, 284: 510-515.
[12] Miao W F, Liu H R, Zhang Z G, et al. Solid State Sci, 2008, 10: 1322-1326.
[13] Belloni J, Mostafavi M, Remita H, et al. New J Chem, 1998: 1239-1255.
[14] Gou LF, Murphy CJ. J Mater Chem, 2004, 14: 735-738.
[15] Xu Y Y, Chen D R, Jiao X L, et al. J Phys Chem C, 2007, 111: 16284-16289.
[16] Borgohain K, Murase N, Mahamuni S. J Appl Phys, 2002, 92: 1292-1297.
[17] Roosen A R, Carter W C. Phys A, 1998, 261: 232-247.
[18] Mullin J W. Crystallization, 3rd ed. London (UK): Butterworth-Heinemann press, 1997, 288.
[19] Vargeese A A, Joshi S S, Krishnamurthy V N. Cryst Growth Des, 2008, 8: 1060-1066.
[20] Oaki Y, Imai H. Cryst Growth Des, 2003, 3: 711-716.
[21] Kim W, Robertson R E, Zand R. Cryst Growth Des, 2005, 5: 513-522.
[22] Xu H L, Wang W Z, Wei Zhu. Micropor Mesopor Mat, 2006, 95: 321-328.
[23] Jiao S, Xu L, Jiang K, et al. Adv Mater, 2006, 18: 1174-1177.
[24] Liu D F, Yang S H, Lee S T. J Phys Chem C, 2008, 112: 7110-7118.
[25] Kuo C H, Huang M H. J Phys Chem C, 2008, 112: 18355-18360.
[26] Xu H L, Wang W Z, Wei Zhu. J Phys Chem B, 2006, 110: 13829-13834.
[27] Wong J C S, Linsebigler A, Lu G, et al. J Phys Chem, 1995, 99: 335-344.
[28] Schwitzgebel J, Ekerdt J J, Gerischer H, et al. J Phys Chem, 1995, 99: 5633-5638.
[29] Ilisz I, Dombi A. Appl Catal A: Gen, 1999, 180: 35-45.
[30] Wood B J, Wise H, Yolles R S. J Catal, 1969, 15: 355-362.
[31] Zhang L S, Li J L, Chen Z G, et al. Appl Catal A: Gen, 2006, 299: 292-297.
[32] De Jongh P E, Vanmaekelbergh D, Kelly J J. J Electrochem Soc, 2000, 147: 486-489.
[33] De Jongh P E, Vanmaekelbergh D, Kelly J J. Chem Commun, 1999: 1069-1070.
[34] Li J L, Liu L, Yu Y, et al. Electrochem Commun, 2004, 6: 940-943.