logo

Irreversible transformation of the porphyrin supramolecular structures under a water vapor environment

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Irreversible transformation of the porphyrin supramolecular structures under a water vapor environment

YE Ming
ZHANG Yi
Nuclear Science and TechniquesVol.22, No.1pp.30-34Published in print 20 Feb 2011
83800

Supramolecular structures formed by H4TPPS42– have been widely used for different applications. In this paper, the stability of H4TPPS42− nanorods on mica substrate is investigated by atom force microscopy (AFM) observation. An irreversible transformation of H4TPPS42– from nanorods (3.8±0.4 nm in height) to a lower film structure (1.9±0.4 nm in height) was found with the samples incubated at various relative humidities (RH). The transformation rate depends strongly on the RH and environment temperature.

Supramolecular structuresH4TPPS42−StabilityAFM
References
[1] Alivisatos P, Barbara P F, Castleman A W. Adv Mater, 1998, 10: 1297-1336.
[2] Lampoura S S, Spitz C, Dähne S. J Phys Chem B, 2002, 106: 3103-3111.
[3] Psencík J, Ma Y Z, Arellano J B. Biophys J, 2003, 84: 1161-1179.
[4] Collini E, Ferrante C, Bozio R. J Phys Chem B, 2004, 109: 2-5.
[5] Yamamoto Y, Fukushima T, Suna Y. Science, 2006, 314: 1761-1764.
[6] Röger C, Müller M G, Lysetska M. J Am Chem Soc, 2006, 128: 6542-6543.
[7] Elemans J, Van Hameren R, Nolte R J M. Adv Mater, 2006, 18: 1251-1266.
[8] Drain C M, Varotto A, Radivojevic I. Chem Rev, 2009, 109: 1630-1658.
[9] Doan S C, Shanmugham S, Aston D E. J Am Chem Soc, 2005, 127: 5885-5892.
[10] Kosal M E, Suslick K S. J Solid State Chem, 2000, 152: 87-98.
[11] Medforth C J, Wang Z, Martin K E. Chem Commun, 2009, 47: 7261-7277.
[12] Snitka V, Rackaitis M, Rodaite R. Sens Actuators B: Chem, 2005, 109: 159-166.
[13] Schwab A D, Smith D E, Rich C S. J Phys Chem B, 2003, 107: 11339-11345.
[14] Zhang L, Yuan J, Liu M. J Phys Chem B, 2003, 107: 12768-12773.
[15] Wang Z C, Medforth C J, Shelnutt J A. J Am Chem Soc, 2004, 126: 15954-15955.
[16] Wang Z, Ho K J, Medforth C J. Adv Mater, 2006, 18: 2557-2560.
[17] Rotomskis R, Augulis R, Snitka V. J Phys Chem B, 2004, 108: 2833-2838.
[18] Castriciano M A, Romeo A, Villari V. J Phys Chem B, 2004, 108: 9054-9059.
[19] Kubát P, Lang K, Janda P. Langmuir, 2005, 21: 9714-9720.
[20] Schwab A D, Smith D E, Bond-Watts B. Nano Lett, 2004, 4: 1261-1265.
[21] Rimeika R, Rotomskis R, Poderys V. Ultragarsas, 2006, 58: 13-15.
[22] Pullerits T, Sundström V. Acc Chem Res, 1996, 29: 381-389.
[23] Nathani H, Wang J, Weihs T P. J Appl Phys, 2007, 101: 104315.
[24] Zhao Y, Toyama M, Kita K. Appl Phys Lett, 2006, 88: 072904-072903.
[25] Cui Y, Wang R. Phys Lett A, 2010, 374: 625-627.
[26] Ewing G E. Chem Rev, 2006, 106: 1511-1526.
[27] Verdaguer A, Sacha G M, Bluhm H. Chem Rev, 2006, 106: 1478-1510.
[28] Buch V, Milet A, Vacha R. Proc Natl Acad Sci USA, 2007, 104: 7342-7347.
[29] Shinto H, Komiyama D, Higashitani K. Langmuir, 2006, 22: 2058-2064.