logo

XAFS study of Cu2+ in aqueous solution of CuBr2

SYNCHROTRON TECHNOLOGY AND APPLICATIONS

XAFS study of Cu2+ in aqueous solution of CuBr2

DAI Binbin
WANG Qian
MA Jingyuan
LI Jiong
ZHANG Shuo
HUANG Yuying
HUANG Wei
WU Guozhong
ZOU Yang
JIANG Zheng
XU Hongjie
Nuclear Science and TechniquesVol.23, No.3pp.129-133Published in print 20 Jun 2012
35000

Copper ion is the essential microelement to many organisms. In this paper, the local structure of Cu2+ in CuBr2 aqueous solutions with different concentrations are investigated by using X-ray absorption fine structure (XAFS) technique. XANES (X-ray Absorption Near Edge Structure) spectra indicate that charge transfer from Br- to Cu2+ decreases with the solution concentration, which lead to a shift of the absorption edge. The shoulder appearing at the rising edge proves to be characteristic of a tetragonal distortion. The Fourier transform magnitudes of EXAFS (Extended X-ray absorption fine structure) data of Cu species suggest that more Cu-Br bonds may exist in high concentrations. A fivefold coordination configuration like a pyramid is used as the fitting parameters. From the analysis of the coordination numbers, the proportion of Cu-O and Cu-Br is 4:1 in the saturated solution. The Br atom is on the equatorial plane of the model. The fitting results agree well with the experiment data.

CuBr2Aqueous solutionXAFScoordination
References
[1] D'Angelo P, Barone V, Chillemi G, et al. J Am Chem Soc 2002, 124: 1958-1967.
[2] Dang LX, Schenter GK, Fulton JL. J Phys Chem B, 2003, 107: 14119-14123.
[3] Salmon PS, Neilson GW. Journal of Physics-Condensed Matter, 1989, 1: 5291-5295.
[4] Becaria A, Bondy SC, Campbell A. Journal of Alzheimer's Disease, 2003, 5: 31-38.
[5] Kucharzewski M, Braziewicz J, Majewska U, et al. Biol Trace Elem Res, 2003, 93: 9-18.
[6] Miesel R, Zuber M. Inflammation, 1993, 17: 283-294.
[7] Kau L S, Spira-Solomon D J, Penner-Hahn J E, et al. J Am Chem Soc, 1987, 109: 6433-6442.
[8] Chaboy J, Munoz-Paez A, Carrera F, et al. Phys Rev B, 2005, 71: 134208.
[9] Berry A J, Hack A C, Mavrogenes J A, et al. Am Mineral, 2006, 91: 1773-1782.
[10] Corami A, D'Acapito F, Mignardi S, et al. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2008, 149: 209-213.
[11] Frank P, Benfatto M, Szilagyi R K, et al. Inorg Chem, 2007, 46: 7684-7684.
[12] Korshin G V, Frenkel A I, Stern E A. Environmental Science & Technology, 1998, 32: 2699-2705.
[13] Garcia J, Benfatto M, Natoli C R, et al. Chem Phys, 1989, 132: 295-302.
[14] Okan S E, Salmon P S. Mol Phys, 1995, 85: 981-998.
[15] Pasquarello A, Petri I, Salmon P S, et al. Sci, 2001, 291: 856-859.
[16] Benfatto M, D'Angelo P, Della Longa S, et al. Phys Rev B, 2002, 65: 174205/174201-174205.
[17] Frank P, Benfatto M, Szilagyi R K, et al. Inorg Chem, 2005, 44: 1922-1933.
[18] Bryantsev V S, Diallo M S, van Duin A C T, et al. The Journal of Physical Chemistry A, 2008, 112: 9104-9112.
[19] Mo L P, Ma Z C, Zhang Z H. Synth Commun, 2005, 35: 1997-2004.
[20] King L C, Ostrum G K. The Journal of Organic Chemistry, 1964, 29: 3459-3461.
[21] Bhatt S, Nayak S K. Synth Commun, 2007, 37: 1381-1388.
[22] Onori G, Santucci A, Scafati A, et al. Chem Phys Lett, 1988, 149: 289-294.
[23] Palladino L, Dellalonga S, Reale A, et al. J Chem Phys, 1993, 98: 2720-2726.
[24] Shivaiah V, Das S K. Angew Chem Int Ed, 2006, 45: 245-248.
[25] Meijuan Y, Wangsheng C, Xing C, et al. Journal of Physics: Conference Series, 2009, 190.
[26] Fontaine A, Lagarde P, Raoux D, et al. Phys Rev Lett, 1978, 41: 504-507.