logo

Optimum thickness of Mössbauer absorber

Optimum thickness of Mössbauer absorber

CHEN Yi-Long
YI Fan
ZHANG Fu-Liang
Nuclear Science and TechniquesVol.11, No.2pp.91-95Published in print 01 May 2000
19400

If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work, an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

Mössbauer spectrumOptimum thicknessSignal to noise ratio
References
1 Raucourt D G. Nucl Instr Meth, 1989, B44: 199
2 Shimony U. Nucl Instr Meth, 1965, 37: 348
3 Plamey P J. Nucl Instr Meth, 1977, 142: 553
4 Weisman L D, Swartzendruber L J, Bennett L H. In: Measurement of Physical Properties, Passaglia E ed. New York: John Wiley and Sons, 1973, 392
5 Bancroft M. Mössbauer spectroscopy. London: McGraw-Hill Book Company Limited, 1973, 57
6 Sarma P R, Prakash V, Tripathi K C. Nucl Instr Meth, 1980, 178: 167
7 Long J, Cranshaw T E, Longworth G. MERDJ, 1983, 6(2): 42
8 Housley R M, Erickson N E, Dash J G. Nucl Instr Meth, 1964, 27: 33
9 Kolk B, Bleloch A L, Hall D B. Hyp Inter, 1986, 29: 1377
10 Grant R W, Housley R M, Gonser U. Phys Rev, 1969, 178: 525
11 Herber R H, Wertheim G K. In: The Mössbauer Effect, Compton D M J, Schoen A H ed. New York: John Wiley and Sons Inc, 1962, 107
12 Erist R D, Wilson D R, Herber R H. J Am Chem Soc, 1984, 106: 1646
13 Herber R H. In: Chemical Mössbauer Spectroscopy, Herber R H ed. New York: Pleum Press, 1984, 199