Introduction
The nucleon effective mass
Much effort has been made to constrain effective mass splitting using heavy-ion collisions (HICs) [13-18], nucleon–nucleus optical potentials [19-21], and giant monopole resonance [22-25]. An interesting finding is that the effective mass splitting obtained using the nucleon–nucleus optical potential analysis favors
Currently, the new generation rare isotope facilities or planned facilities, such as the Heavy Ion Research Facility in Lanzhou (HIRFL/Lanzhou) [27], Facility for Rare Isotope Beams at Michigan State University (FRIB/MSU) [28], Radioactive Isotope Beam Factory (RIBF/RIKEN) [29], Rare isotope Accelerator complex for ON-line experiment (RAON/Korea) [30], and Beijing Isotope Separation On-line (BISOL/Beijing) [31], can produce rare isotope beams from tens to hundreds MeV per nucleon for studying the dynamical evolution of neutron-rich nuclear systems. Some important neutron-rich HIC experiments [32-36] have been performed to extract information on the density dependence of symmetry energy and effective mass splitting by comparing the data with transport model simulations [37, 34].
Recently, an experiment on the 86Kr + 208Pb system was performed using the Compact Spectrometer for Heavy IoN Experiment (CSHINE) [38-41], which was installed at the final focal plane of the Radioactive Ion Beam Line in Lanzhou (RIBLL-I/HIRFL) [42, 43]. Both yield and kinetic variables of the A = 3 isobars, that is, t and 3He, were measured. This provides an opportunity to constrain the symmetry energy [44] at subsaturation densities and further verify the capability of the transport models. In addition, constraining effective mass splitting using the facilities in Lanzhou requires calculations to extend the beam energy of ∼100A–200A MeV, as this energy region has been found to be the optimal beam energy in previous calculations [45, 13].
In this study, we first analyze the correlations between different nuclear matter parameters to illustrate the significance of the investigation of effective mass splitting. We then investigate the impacts of effective mass splitting on the HIC observables, such as neutron to proton yield ratios, triton to Helium-3 yield ratios, of the 86Kr + 208Pb system at beam energies ranging from 25A to 200A MeV using ImQMD-Sky model.
Theoretical Model
In the ImQMD-Sky model, each nucleon is represented by a Gaussian wave packet given by
For the nucleonic potential, the Skyrme-type nucleonic potential energy density without the spin-orbit term is used:
The nonlocal potential energy density or momentum-dependent interaction term, that is, umd, is also considered as a Skyrme-type momentum-dependent energy density functional. It is obtained based on its interaction form
Initialization was performed in the same manner as in Ref. [46]. The centroids of the wave packets for neutrons and protons were sampled within the empirical radii of neutrons and protons [46]. After the positions of all nucleons are finally prepared, the density distribution is known. The momenta of nucleons were sampled using a local density approach.
It should be noted that the effects of the width of the wave packet on the momentum sampling in the initialization are considered in this work. Usually, C(σr) is omitted in the quantum-molecular-dynamics-type models for the study of intermediate-high energy HICs because it has no effect on the equation of motion, and its correction to the initial momentum is relatively small. However, this effect cannot be neglected, particularly when studying low-energy reactions. This is because C(σr) in the kinetic energy term reaches ∼25% of the Fermi energy at a normal density, ∼35 MeV. For example, C(σr) is 8.97 MeV when the width of the wave packet takes a typical value, that is, σr = 1.32 fm. For the expected momentum values of the nucleons sampled in the calculations, the width of the wave packet has no direct effect because
Results and Discussion
To understand the importance of effective mass splitting on symmetry energy constraints, we first analyzed the correlations between different nuclear matter parameters. Subsequently, the influence of effective mass splitting on the HIC observables is presented and discussed.
Nuclear matter parameters and their correlations
For the Skyrme effective interaction used in this work, the corresponding isospin asymmetric equation of state for cold nuclear matter is
Because the aforementioned nuclear matter parameters are obtained from the same energy density functional, one can expect correlations between them. For example, as expressed in Eq. (10), S(ρ) depends on the two-body, three-body, and momentum-dependent interaction terms. These three terms are correlated with E0, K0, and
To describe the correlation between different nuclear matter parameters with less bias, one can calculate the linear correlation coefficient CAB between the nuclear matter parameters A and B from the published parameter sets, which satisfy the current knowledge of the nuclear matter parameters [50]:
The values of these parameters are listed in Table 1, and the correlation coefficients CAB are shown in Fig. 1. A positive value of CAB reflects a positive linear correlation, whereas a negative value indicates a negative linear correlation. Correlations exist between the different nuclear matter parameters. Specifically, the correlations between S0 and ρ0, L and S0,
Parameter | ρ0 | E0 | K0 | S0 | L | ||
---|---|---|---|---|---|---|---|
BSk9 | 0.159 | -15.90 | 231.56 | 30.00 | 39.90 | 0.80 | 0.91 |
BSk10 | 0.159 | -15.89 | 238.17 | 29.98 | 37.34 | 0.92 | 0.81 |
BSk11 | 0.159 | -15.84 | 239.03 | 30.04 | 38.34 | 0.92 | 0.82 |
BSk12 | 0.159 | -15.84 | 238.99 | 30.04 | 37.98 | 0.92 | 0.82 |
BSk13 | 0.159 | -15.84 | 239.02 | 30.04 | 38.81 | 0.92 | 0.82 |
BSk14 | 0.159 | -15.83 | 240.29 | 30.04 | 43.92 | 0.80 | 0.78 |
BSk15 | 0.159 | -16.02 | 241.70 | 30.00 | 33.62 | 0.80 | 0.77 |
BSk16 | 0.159 | -16.03 | 242.63 | 30.03 | 34.83 | 0.80 | 0.78 |
BSk17 | 0.159 | -16.03 | 242.65 | 30.03 | 36.25 | 0.80 | 0.78 |
FPLyon | 0.162 | -15.90 | 217.20 | 30.94 | 42.78 | 0.84 | 0.97 |
Gs | 0.158 | -15.57 | 238.13 | 31.46 | 94.32 | 0.78 | 0.68 |
KDE | 0.164 | -15.97 | 223.13 | 31.93 | 41.44 | 0.76 | 0.86 |
KDE0v | 0.161 | -16.08 | 229.01 | 32.99 | 45.22 | 0.72 | 0.77 |
KDE0v1 | 0.165 | -16.21 | 228.33 | 34.62 | 54.74 | 0.74 | 0.81 |
LNS | 0.175 | -15.29 | 211.47 | 33.48 | 61.55 | 0.83 | 0.73 |
MSk1 | 0.157 | -15.81 | 232.62 | 29.96 | 34.05 | 1.00 | 1.00 |
MSL0 | 0.160 | -15.86 | 230.26 | 29.98 | 59.97 | 0.80 | 0.70 |
NRAPR | 0.161 | -15.83 | 226.52 | 32.84 | 59.73 | 0.69 | 0.60 |
RATP | 0.160 | -16.02 | 239.84 | 29.27 | 32.41 | 0.67 | 0.56 |
Rs | 0.158 | -15.57 | 237.94 | 30.63 | 85.88 | 0.78 | 0.68 |
Sefm074 | 0.160 | -15.79 | 239.17 | 33.33 | 88.59 | 0.74 | 0.63 |
Sefm081 | 0.161 | -15.66 | 237.24 | 30.79 | 79.48 | 0.81 | 0.68 |
Sefm09 | 0.161 | -15.53 | 240.24 | 27.80 | 70.05 | 0.90 | 0.75 |
SGI | 0.154 | -15.87 | 260.52 | 28.27 | 63.76 | 0.61 | 0.58 |
SGII | 0.158 | -15.57 | 213.95 | 26.81 | 37.70 | 0.79 | 0.67 |
SKa | 0.155 | -15.97 | 262.15 | 32.86 | 74.56 | 0.61 | 0.52 |
Ska25s20 | 0.161 | -16.05 | 221.45 | 33.83 | 63.90 | 0.98 | 0.98 |
SkI2 | 0.158 | -15.75 | 241.98 | 33.47 | 104.71 | 0.68 | 0.80 |
SkI4 | 0.160 | -15.92 | 247.64 | 29.48 | 60.36 | 0.65 | 0.80 |
SkI6 | 0.159 | -15.90 | 248.40 | 30.07 | 59.67 | 0.64 | 0.80 |
SkM | 0.160 | -15.75 | 216.00 | 30.72 | 49.39 | 0.79 | 0.66 |
SkMs | 0.160 | -15.75 | 216.00 | 30.01 | 45.84 | 0.79 | 0.65 |
SkMP | 0.157 | -15.54 | 230.74 | 29.88 | 70.33 | 0.65 | 0.59 |
SkO | 0.160 | -15.81 | 222.41 | 31.90 | 79.00 | 0.90 | 0.85 |
SkOp | 0.160 | -15.73 | 221.94 | 31.92 | 68.92 | 0.90 | 0.87 |
SKRA | 0.159 | -15.75 | 216.08 | 31.28 | 53.07 | 0.75 | 0.63 |
SkS1 | 0.161 | -15.84 | 227.93 | 28.74 | 30.65 | 0.86 | 0.64 |
SkSC14 | 0.161 | -15.90 | 235.96 | 30.02 | 33.11 | 1.00 | 1.00 |
SkT1 | 0.161 | -15.96 | 236.10 | 32.02 | 56.22 | 1.00 | 1.00 |
SkT1s | 0.162 | -15.95 | 239.83 | 32.23 | 56.27 | 1.00 | 1.00 |
SkT1a | 0.161 | -15.96 | 236.10 | 32.02 | 56.22 | 1.00 | 1.00 |
SkT2 | 0.161 | -15.92 | 235.66 | 32.00 | 56.20 | 1.00 | 1.00 |
SkT2a | 0.161 | -15.92 | 235.66 | 32.00 | 56.20 | 1.00 | 1.00 |
SkT3 | 0.161 | -15.92 | 235.70 | 31.50 | 55.35 | 1.00 | 1.00 |
SkT3a | 0.161 | -15.92 | 235.70 | 31.50 | 55.35 | 1.00 | 1.00 |
SkT6 | 0.161 | -15.94 | 236.21 | 29.97 | 30.85 | 1.00 | 1.00 |
SkT6a | 0.161 | -15.94 | 236.21 | 29.97 | 30.85 | 1.00 | 1.00 |
SkT7 | 0.161 | -15.92 | 236.45 | 29.55 | 31.08 | 0.83 | 0.71 |
SkT7a | 0.161 | -15.92 | 236.45 | 29.55 | 31.08 | 0.83 | 0.71 |
SkT8 | 0.161 | -15.92 | 236.40 | 29.94 | 33.69 | 0.83 | 0.83 |
SkT8a | 0.161 | -15.92 | 236.40 | 29.94 | 33.69 | 0.83 | 0.83 |
SkT9 | 0.160 | -15.86 | 234.22 | 29.73 | 33.82 | 0.83 | 0.83 |
SkT9a | 0.160 | -15.86 | 234.22 | 29.73 | 33.82 | 0.83 | 0.83 |
SKX | 0.155 | -16.03 | 269.76 | 31.07 | 33.40 | 0.99 | 0.75 |
SKXm | 0.159 | -16.03 | 238.37 | 31.21 | 32.07 | 0.97 | 0.75 |
Skxs15 | 0.161 | -15.73 | 200.01 | 31.83 | 34.95 | 0.97 | 0.94 |
SLy0 | 0.160 | -15.95 | 229.00 | 31.95 | 47.10 | 0.70 | 0.80 |
SLy1 | 0.160 | -15.96 | 229.10 | 31.95 | 47.06 | 0.70 | 0.80 |
SLy2 | 0.161 | -15.96 | 230.86 | 32.04 | 47.49 | 0.70 | 0.80 |
Sly230b | 0.160 | -15.95 | 230.84 | 32.04 | 45.99 | 0.69 | 0.80 |
SLy3 | 0.160 | -15.95 | 228.96 | 31.95 | 45.30 | 0.70 | 0.80 |
SLy4 | 0.160 | -15.95 | 230.84 | 32.04 | 45.96 | 0.69 | 0.80 |
SLy5 | 0.161 | -15.96 | 230.77 | 32.05 | 48.18 | 0.70 | 0.80 |
SLy6 | 0.159 | -15.90 | 229.91 | 31.95 | 47.45 | 0.69 | 0.80 |
SLy7 | 0.158 | -15.88 | 228.98 | 31.95 | 46.93 | 0.69 | 0.80 |
SLy8 | 0.160 | -15.95 | 229.18 | 31.96 | 47.16 | 0.70 | 0.80 |
SLy9 | 0.151 | -15.77 | 229.41 | 31.95 | 54.82 | 0.67 | 0.80 |
SLy10 | 0.156 | -15.88 | 230.56 | 32.01 | 38.72 | 0.68 | 0.80 |
QMC600 | 0.174 | -16.40 | 221.21 | 34.65 | 46.81 | 0.81 | 0.61 |
QMC650 | 0.172 | -16.21 | 221.48 | 33.88 | 53.38 | 0.78 | 0.63 |
QMC700 | 0.171 | -16.11 | 223.89 | 33.69 | 59.49 | 0.76 | 0.64 |
QMC750 | 0.171 | -16.21 | 225.98 | 33.96 | 65.10 | 0.74 | 0.65 |
SV-bas | 0.160 | -15.88 | 234.23 | 30.03 | 32.33 | 0.90 | 0.71 |
SV-K218 | 0.161 | -15.88 | 217.32 | 29.97 | 34.78 | 0.90 | 0.72 |
SV-K226 | 0.160 | -15.88 | 224.80 | 29.97 | 34.27 | 0.90 | 0.72 |
SV-K241 | 0.159 | -15.89 | 241.55 | 30.02 | 30.94 | 0.90 | 0.71 |
SV-kap20 | 0.160 | -15.88 | 234.08 | 30.03 | 35.52 | 0.90 | 0.83 |
SV-mas07 | 0.160 | -15.87 | 233.76 | 30.01 | 52.18 | 0.70 | 0.71 |
SV-mas08 | 0.160 | -15.88 | 233.64 | 30.02 | 40.17 | 0.80 | 0.71 |
SV-min | 0.161 | -15.89 | 221.55 | 30.65 | 44.85 | 0.95 | 0.93 |
SV-sym32 | 0.159 | -15.92 | 232.74 | 31.95 | 57.11 | 0.90 | 0.72 |
SV-sym34 | 0.159 | -15.94 | 233.50 | 33.96 | 80.92 | 0.90 | 0.72 |
SV-tls | 0.160 | -15.87 | 234.32 | 30.04 | 33.16 | 0.90 | 0.71 |
T11 | 0.161 | -15.99 | 229.46 | 31.97 | 49.45 | 0.70 | 0.80 |
T12 | 0.161 | -15.98 | 229.73 | 31.98 | 49.37 | 0.70 | 0.80 |
T13 | 0.161 | -15.98 | 229.83 | 31.99 | 49.53 | 0.70 | 0.80 |
T14 | 0.161 | -15.97 | 229.79 | 31.98 | 49.47 | 0.70 | 0.80 |
T15 | 0.161 | -15.98 | 229.48 | 31.97 | 49.63 | 0.70 | 0.80 |
T16 | 0.161 | -15.99 | 229.71 | 31.98 | 49.44 | 0.70 | 0.80 |
T21 | 0.161 | -16.00 | 228.97 | 31.94 | 49.74 | 0.70 | 0.80 |
T22 | 0.161 | -16.00 | 229.18 | 31.95 | 49.54 | 0.70 | 0.80 |
T23 | 0.161 | -15.99 | 229.35 | 31.96 | 49.57 | 0.70 | 0.80 |
T24 | 0.161 | -15.99 | 229.52 | 31.97 | 49.84 | 0.70 | 0.80 |
T25 | 0.161 | -15.97 | 230.24 | 32.01 | 49.14 | 0.70 | 0.80 |
T26 | 0.161 | -15.95 | 230.33 | 32.01 | 48.77 | 0.70 | 0.80 |
T31 | 0.161 | -16.00 | 229.32 | 31.96 | 49.73 | 0.70 | 0.80 |
T32 | 0.161 | -16.00 | 229.06 | 31.95 | 50.25 | 0.70 | 0.80 |
T33 | 0.161 | -16.00 | 229.47 | 31.97 | 49.64 | 0.70 | 0.80 |
T34 | 0.161 | -16.00 | 229.05 | 31.95 | 50.06 | 0.70 | 0.80 |
T35 | 0.161 | -15.98 | 230.12 | 32.00 | 49.60 | 0.70 | 0.80 |
T36 | 0.161 | -15.97 | 229.66 | 31.98 | 49.05 | 0.70 | 0.80 |
T41 | 0.162 | -16.04 | 230.24 | 32.01 | 50.62 | 0.71 | 0.80 |
T42 | 0.162 | -16.03 | 230.55 | 32.02 | 50.74 | 0.70 | 0.80 |
T43 | 0.162 | -16.02 | 230.88 | 32.04 | 50.62 | 0.70 | 0.80 |
T44 | 0.161 | -16.00 | 229.47 | 31.97 | 50.04 | 0.70 | 0.80 |
T45 | 0.161 | -16.00 | 229.14 | 31.95 | 49.63 | 0.70 | 0.80 |
T46 | 0.161 | -15.98 | 230.46 | 32.02 | 49.96 | 0.70 | 0.80 |
T51 | 0.162 | -16.03 | 230.73 | 32.03 | 50.73 | 0.70 | 0.80 |
T52 | 0.161 | -16.03 | 228.94 | 31.94 | 50.64 | 0.70 | 0.80 |
T53 | 0.161 | -16.00 | 229.40 | 31.97 | 50.01 | 0.70 | 0.80 |
T54 | 0.161 | -16.01 | 229.26 | 31.96 | 50.25 | 0.70 | 0.80 |
T55 | 0.161 | -16.01 | 228.95 | 31.94 | 50.20 | 0.70 | 0.80 |
T56 | 0.161 | -15.99 | 229.87 | 31.99 | 50.13 | 0.70 | 0.80 |
T61 | 0.162 | -16.05 | 230.27 | 32.01 | 50.81 | 0.71 | 0.80 |
T62 | 0.162 | -16.05 | 230.17 | 32.00 | 50.34 | 0.71 | 0.80 |
T63 | 0.162 | -16.04 | 230.34 | 32.01 | 51.09 | 0.70 | 0.80 |
T64 | 0.162 | -16.01 | 231.00 | 32.04 | 50.54 | 0.70 | 0.80 |
T65 | 0.162 | -16.02 | 230.73 | 32.03 | 50.54 | 0.70 | 0.80 |
T66 | 0.161 | -16.00 | 229.28 | 31.96 | 50.28 | 0.70 | 0.80 |
-202306/1001-8042-34-06-014/alternativeImage/1001-8042-34-06-014-F001.jpg)
Symmetry potential
Based on Eq. (17), effective mass splitting is related to the symmetry potential, which plays an important role in HICs. The symmetry potential Vsym is also called the Lane potential, which equals the difference between the neutron and proton potentials:
To quantitatively understand the momentum and density dependence of VLane on HIC observables, we investigate VLane(ρ,p) for two typical Skyrme interaction parameter sets: SkM* and SLy4. These two Skyrme interaction parameter sets were selected for the following reasons: First, the incompressibility (K0), symmetry energy coefficient (S0), and isoscalar effective mass (
Parameter | ρ0 | E0 | K0 | S0 | L | ||
---|---|---|---|---|---|---|---|
SLy4 | 0.160 | -15.97 | 230 | 32 | 46 | 0.69 | 0.80 |
SkM* | 0.160 | -15.77 | 217 | 30 | 46 | 0.79 | 0.65 |
In Fig. 2, we present VLane as a function of kinetic energy for cold nuclear matter with isospin asymmetry δ=0.2 at different densities. VLane increased (decreased) as the kinetic energy increased for
-202306/1001-8042-34-06-014/alternativeImage/1001-8042-34-06-014-F002.jpg)
Y(n)/Y(p) and Y(t)/Y(3He)
To observe the effects of effective mass splitting on HIC observables such as Y(n)/Y(p) and Y(t)/Y(3He), we performed a simulation of the 86Kr + 208 Pb system at beam energies from Ebeam = 25A to 200A MeV. In the calculations, the impact parameter b = 1 fm and the number of events was 100,000. The dynamic evolution time is stopped at 400 fm/c.
The left panels of Fig. 3 show the Y(n)/Y(p) ratios as functions of the normalized nucleon center-of-mass energy
-202306/1001-8042-34-06-014/alternativeImage/1001-8042-34-06-014-F003.jpg)
Specifically, the difference in Y(n)/Y(p) between SLy4 (
The right panels of Fig. 3 show the Y(t)/Y(3He) ratios as functions of the normalized nucleon center-of-mass energy, that is,
Furthermore, Fig. 3 also shows that the Y(n)/Y(p) ratio decreases exponentially with respect to
R2 | ln(Y(n)/Y(p)) | ln(Y(t)/Y(3He)) | ||
---|---|---|---|---|
SLy4 | SkM* | SLy4 | SkM* | |
25A MeV | 0.98767 | 0.98431 | 0.99073 | 0.97503 |
100A MeV | 0.97342 | 0.98295 | 0.50164 | 0.84234 |
200A MeV | 0.36945 | 0.96828 | 0.79116 | 0.66351 |
Figure 4 presents Sn/p (
-202306/1001-8042-34-06-014/alternativeImage/1001-8042-34-06-014-F004.jpg)
Summary and outlook
In summary, we compiled 119 Skyrme interaction sets and their corresponding nuclear matter parameters to understand the correlations between different nuclear matter parameters. By analyzing the linear correlation coefficient, the strength of the correlation between different nuclear matter parameters was quantitatively obtained. Furthermore, the correlations between different nuclear parameters indicates that obtaining tight constraints on the symmetry energy requires knowing not only the values of the symmetry energy coefficient S0 and the slope of the symmetry energy L but the isoscalar effective mass
To understand the impact of effective mass splitting on HIC observables, we simulated the 86Kr + 208Pb system at beam energies ranging from 25 to 200 MeV per nucleon. Two observables were analyzed: the emitted neutron to proton yield ratio and the triton to 3He yield ratio. Our results show that the energy spectra of Y(n)/Y(p) and Y(t)/Y(3He) can be used to distinguish the effective mass splitting, which is consistent with previous studies in Refs. [13, 45]. Furthermore, we constructed the characteristic variables, namely, the slope and intercept of ln [Y(n)/Y(p)] and ln[Y(t)/Y(3He)], respectively, which can be directly related to the effective mass splitting. The greatest effects were observed at 200A MeV for (Y(n)/Y(p)), whereas the greatest effects were observed at 100A MeV for (Y(t)/Y(3He)). This difference can be attributed to the cluster formation mechanism.
Nucleon effective masses in neutron-rich matter
. Progress in Particle and Nuclear Physics 99, 29-119 (2018). doi: 10.1016/j.ppnp.2018.01.001Many-body theory of nuclear matter
. Physics Reports 25, 83-174 (1976). doi: 10.1016/0370-1573(76)90017-XNucleon effective mass in hot dense matter
. Phys. Rev. C 101, 065801 (2020). doi: 10.1103/PhysRevC.101.065801Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-hartree-fock model versus relativistic hartree-fock model
. Phys. Rev. C 93, 015803 (2016). doi: 10.1103/PhysRevC.93.015803Transport coefficients of leptons in superconducting neutron star cores
. Phys. Rev. D 98, 063015 (2018). doi: 10.1103/PhysRevD.98.063015Thermal evolution and quiescent emission of transiently accreting neutron stars
. Astron. Astrophys. 629, 16 (2019). doi: 10.1051/0004-6361/201936003Properties of the nuclear medium
. Reports on Progress in Physics 75, 026301 (2012). doi: 10.1088/0034-4885/75/2/026301Minimal cooling of neutron stars: A new paradigm
. The Astrophysical Journal Supplement Series 155, 623 (2004). doi: 10.1086/424844Nuclear correlations and neutrino emissivity from the neutron branch of the modified urca process
. Phys. Rev. C 93, 045806 (2016). doi: 10.1103/PhysRevC.93.045806Role of nuclear correlations and kinematic effects on neutrino emission from the modified urca processes
. Phys. Rev. C 98, 025803 (2018). doi: 10.1103/PhysRevC.98.025803In-medium enhancement of the modified urca neutrino reaction rates
. Phys. Lett. B 786, 28-34 (2018). doi: 10.1016/j.physletb.2018.09.035Neutron star cooling with microscopic equations of state
. Monthly Notices of the Royal Astronomical Society 484, 5162-5169 (2019). https://academic.oup.com/mnras/article-pdf/484/4/5162/27787299/stz336.pdf, doi: 10.1093/mnras/stz336Constraints on nucleon effective mass splitting with heavy ion collisions
. Physics Letters B 732, 186-190 (2014). doi: 10.1016/j.physletb.2014.03.030Probing effective nucleon masses with heavy-ion collisions
. Phys. Rev. C 94, 011601 (2016). doi: 10.1103/PhysRevC.94.011601Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions
. Nuclear Physics A 878, 3-13 (2012). doi: 10.1016/j.nuclphysa.2012.01.014Neutron-proton effective mass splitting in a boltzmann-langevin approach
. Phys. Rev. C 88, 061601 (2013). doi: 10.1103/PhysRevC.88.061601Effects of symmetry energy and effective k-mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 mev/nucleon
. Phys. Rev. C 96, 024601 (2017). doi: 10.1103/PhysRevC.96.024601Examination of an isospin-dependent single-nucleon momentum distribution for isospin-asymmetric nuclear matter in heavy-ion collisions
. Nucl. Scie. Tech. 31, 71 (2020). doi: 10.1007/s41365-020-00779-6Constraining the neutron-proton effective mass splitting in neutron-rich matter
. Phys. Rev. C 69, 064602 (2004). doi: 10.1103/PhysRevC.69.064602Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model
. Physics Letters B 743, 408-414 (2015). doi: 10.1016/j.physletb.2015.03.005Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials
. Phys. Rev. C 82, 054607 (2010). doi: 10.1103/PhysRevC.82.054607Isospin splitting of the nucleon effective mass from giant resonances in 208Pb
. Phys. Rev. C 93, 034335 (2016). doi: 10.1103/PhysRevC.93.034335Constraining simultaneously nuclear symmetry energy and neutron-proton effective mass splitting with nucleus giant resonances using a dynamical approach
. Phys. Rev. C 95, 034324 (2017). doi: 10.1103/PhysRevC.95.034324Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance
. Phys. Rev. C 101, 044606 (2020). doi: 10.1103/PhysRevC.101.044606Nucleus giant resonances from an improved isospin-dependent boltzmann-uehling-uhlenbeck transport approach
. Phys. Rev. C 102, 024306 (2020). doi: 10.1103/PhysRevC.102.024306Constraining the symmetry energy with heavy-ion collisions and bayesian analyses
. Physics Letters B 799, 135045 (2019). doi: 10.1016/j.physletb.2019.135045Physics opportunities at the new facility hiaf
. Nuclear Physics Review 35, 339 (2018). doi: 10.11804/NuclPhysRev.35.04.339Heavy ion beam acceleration in the first three cryomodules at the facility for rare isotope beams at michigan state university
. Phys. Rev. Accel. Beams 22, 040101 (2019). doi: 10.1103/PhysRevAccelBeams.22.040101Ri beam factory project at riken
. Nuclear Physics A 805, 526c-532c (2008). INPC 2007. doi: 10.1016/j.nuclphysa.2008.02.291Plan for nuclear symmetry energy experiments using the lamps system at the rib facility raon in korea
. The European Physical Journal A 50, 11 (2014). doi: 10.1140/epja/i2014-14049-2The prospects for accelerator-based nuclear physics facilities
. PHYSICS 43, 150 (2014). doi: 10.7693/wl20140301Constraints on nucleon effective mass splitting with heavy ion collisions
. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 732,. doi: 10.1016/j.physletb.2014.03.030Projectile fragmentation of 86Kr at 64 mev/nucleon
. Phys. Rev. C 76, 014609 (2007). doi: 10.1103/PhysRevC.76.014609Constraints on the density dependence of the symmetry energy
. Phys. Rev. Lett. 102, 122701 (2009). doi: 10.1103/PhysRevLett.102.122701Charged pion emission from neutron-rich heavy ion collisions for studies on the symmetry energy
. Ph.D. thesis 188 (2020). doi: 10.25335/s6mp-5668Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions
. Nucl. Scie. Tech. 33, 58 (2022). doi: 10.1007/s41365-022-01050-wDetermination of the stiffness of the nuclear symmetry energy from isospin diffusion
. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevLett.94.032701A compact spectrometer for heavy ion experiments in the fermi energy regime
. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1011, 165592 (2021). doi: 10.1016/j.nima.2021.165592Cshine for studies of hbt correlation in heavy ion reactions
. Nuclear Science and Techniques 32, 4 (2021). doi: 10.1007/s41365-020-00842-2Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions
. Phys. Rev. C 107, L041601 (2023). doi: 10.1103/PhysRevC.107.L041601Reconstruction of fission events in heavy ion reactions with the compact spectrometer for heavy ion experiment
. Nucl. Scie. Tech. 33, 40 (2022). doi: 10.1007/s41365-022-01024-yRibll, the radioactive ion beam line in lanzhou
. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 503, 496-503 (2003). doi: 10.1016/S0168-9002(03)01005-2Design and tests of the prototype beam monitor of the csr external target experiment
. Nuclear Science and Techniques 33, 36 (2022). doi: 10.1007/s41365-022-01021-1Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions
. Phys. Rev. C 71, 024604 (2005). doi: 10.1103/PhysRevC.71.024604Transport properties of isospin effective mass splitting
. Nuclear Physics A 732, 202-217 (2004). doi: 10.1016/j.nuclphysa.2003.11.057Progress of quantum molecular dynamics model and its applications in heavy ion collisions
. Front. Phys. 15, 54301 (2020). doi: 10.1007/s11467-020-0961-9Cvii. the nuclear surface
. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1, 1043-1054 (1956). doi: 10.1080/14786435608238186Influence of the treatment of initialization and mean-field potential on the neutron to proton yield ratios
. Phys. Rev. C 104, 024605 (2021). doi: 10.1103/PhysRevC.104.024605Elliptic flow and system size dependence of transition energies at intermediate energies
. Phys. Rev. C 74, 014602 (2006). doi: 10.1103/PhysRevC.74.014602Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars
. Phys. Rev. C 101, 034303 (2020). doi: 10.1103/PhysRevC.101.034303Probing neutron–proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in gev energy region
. Nucl. Scie. Tech. 31, 77 (2020). doi: 10.1007/s41365-020-00787-6Transport model comparison studies of intermediate-energy heavy-ion collisions
. Prog. Part. Nucl. Phys. 125, 103962 (2022). doi: 10.1016/j.ppnp.2022.103962Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions
. Phys. Rev. C 93, 044609 (2016). doi: 10.1103/PhysRevC.93.044609Elliptic flow and system size dependence of transition energies at intermediate energies
. Phys. Rev. C 74, 014602 (2006). doi: 10.1103/PhysRevC.74.014602A skyrme parametrization from subnuclear to neutron star densities
. Nuclear Physics A 627, 710-746 (1997). doi: 10.1016/S0375-9474(97)00596-4Isotopic scaling in nuclear reactions
. Phys. Rev. Lett. 86, 5023-5026 (2001). doi: 10.1103/PhysRevLett.86.5023Isoscaling in statistical models
. Phys. Rev. C 64, 054615 (2001). doi: 10.1103/PhysRevC.64.054615Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions
. Phys. Rev. C 68, 051601 (2003). doi: 10.1103/PhysRevC.68.051601The thermodynamic model for relativistic heavy ion collisions
. Physics Reports 72, 131-183 (1981). doi: 10.1016/0370-1573(81)90012-0Minimal information and statistical descriptions of nuclear fragmentation
. Physics Letters B 196, 281-284 (1987). doi: 10.1016/0370-2693(87)90731-3Isoscaling in light-ion induced reactions and its statistical interpretation
. Phys. Rev. C 65, 044610 (2002). doi: 10.1103/PhysRevC.65.044610Scaling properties of light-cluster production
. (2014). arXiv:1402.5216