logo

Scanning transmission proton microscopy tomography of reconstruction cells from simulated data

LOW ENERGY ACCELERATORS AND RADIATION APPLICATIONS

Scanning transmission proton microscopy tomography of reconstruction cells from simulated data

ZHANG Conghua
LI Min
HOU Qing
Nuclear Science and TechniquesVol.22, No.2pp.89-94Published in print 20 Apr 2011
30000

For scanning transmission proton microscopy tomography, to compare cell images of the proton stopping power and relative electron density, two cell phantoms are designed and simulated by code FLUKA. The cell images are reconstructed by the filtered back projection algorithm, and compared with their tomography imaging. The images of stopping power and relative electron density slightly vary with proton energies, but the internal images are of clear with high resolution. The organic glass image of relative electron density reveals the resolution power of proton tomography. Also, the simulation results reflect effects of the boundary enhancement, the weak artifacts, and the internal structure border extension by multiple scattering. So using proton tomography to analyze internal structure of a cell is a superior.

Monte Carlo simulationProton tomographyCell imageImage quality
References
[1] Ivan E, Margio C L K, Sergei A, et al. Braz J Phys, 2004, 34: 804-807.
[2] Ren M, Kan J A van, Bettiol A A, et al. Nucl Instrm Meth B, 2007, 260: 124-129.
[3] Pontau A E, Antolak A J, Morse D H, et al. Nucl Instrum Meth Phys Res B, 1989, B40: 646-650.
[4] Hanson K M, Bradbury J N, Cannon T M, et al. IEEE Trans Nucl Sci, 1978, NS-25: 657-660.
[5] Frank Watt. Nucl Instrum Meth Phys Res B, 1997, B130: 1-8.
[6] Saint A, Bench G S, Cholewa M, et al. Nucl Instrum Meth Phys Res B, 1991, B56/57: 717-721.
[7] Formenti P, Breese M B H, Connell S H, et al. Nucl Instrum Meth Phys Res B, 1997, B130: 230-236.
[8] Antolak A J, Bench G. S, Pontau A E, et al. Nucl Instrum Meth Phys Res A, 1994, A353: 568-574.
[9] Schwertnera M, Sakellarioub A, Reinerta T, et al. Ultramicroscopy, 2006, 106: 574-581.
[10] Habchi C, Nguyen D T, Deve G, et al. Nucl Instrum Meth B, 2006, 249: 653-659.
[11] Beasley D, Spyrou N M. Nucl Instrum Meth B, 2007, 264: 323-328.
[12] Michelet C, Moretto Ph. Nucl Instrum Meth B, 1999, 150: 173-178.
[13] Moretto Ph, Llabador Y. Nucl Instrum Meth B, 1997, 130: 324-334.
[14] Ren M, Kan J A van, Bettiol A A, et al. Nucl Instrum Meth B, 2007, 260: 124-129.
[15] Dollinger G, Datzmann G, Hauptner A, et al. Nucl Instrum Meth B, 2003, 210: 6-13.
[16] Li T, Liang J Proc SPIE, 2004, 5370: 2067-2074.
[17] Li T, Liang Z, Mueller K. Nuclear Science Symposium Conference Record, 2003 IEEE, 2003, 4: 2767-2770.
[18] Ivan E, Margio C L K, Sergei A. et al. Braz J Phys, 2004, 34: 804-807.
[19] Hanson K M, Bradbury J N, Cannon T M, et al. Phys Med Biol, 1981,26: 965-983.
[20] Zhang C, Hou Q, Gou C, et al. Nucl Sci Tech, 2010, 21: 20-23.
[21] Kak A C, Slaney M.

Principles of computerized tomographic imaging

, http://cobweb.ecn.purdue.edu/~Malcolm/pct/pct-toc.html.
Baidu ScholarGoogle Scholar