logo

Tumor angiogenesis imaging agent: biodistribution of131I-YG5 and 131I-Boc-YG5

RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

Tumor angiogenesis imaging agent: biodistribution of131I-YG5 and 131I-Boc-YG5

SUN Xin
CHU Taiwei
WANG Xiangyun
Nuclear Science and TechniquesVol.21, No.5pp.302-305Published in print 20 Oct 2010
28800

The cyclic peptide YG5 and the t-butyloxycarbonyl (Boc)-modified analog (Boc-YG5) were labeled with radioiodine. The radiochemical purity of 131I-YG5 or 131I-Boc-YG5 was almost 100% after purification by RP-HPLC. Biodistribution in BALB/C nude mice bearing MCF-7 tumor was measured. After t-butyloxycarbonyl (Boc)-modification, the 131I-Boc-YG5 was quite resistant to deiodination in vivo, resulting in negligible radioactivity accumulation in thyroid. The radiotracer clearance in tumor became faster, the absolute tumor uptake decreased for 131I-Boc-YG5, but the tumor-to-tissue uptake ratios increased. The uptake ratios of tumor to muscle, blood, heart, and lung at 1 h post injection reached 4.73, 1.70, 4.09 and 1.70, respectively. It is demonstrated that Boc-group is an effective prosthetic one to prevent deiodination in vivo and improve tumor imaging for radioiodinated NGR.

RadioiodinationAngiogenesisBiodistributionNGRDeiodinationt-butyloxycarbonyl
References
[1] Koivunen E, Gay D A, Ruoslahti E. J Biol Chem, 1993, 268: 20205-20210.
[2] Koivunen E, Wang B C, Ruoslahti E. J Cell Biol, 1994, 124: 373-380.
[3] Healy J M, Murayama O, Maeda T, et al. Biochemistry, 1995, 34: 3948-3955.
[4] Pasqualini R, Koivunen E, Kain R, et al. Cancer Res, 2000, 60: 722-727.
[5] Arap W, Pasqualini R, Ruoslahti E. Science 1998, 279: 377-380.
[6] Chen X Y, Park R, Shahinian A H, et al. Nucl. Med. Biol, 2004, 31: 11-19.
[7] Ellerby H M, Arap W, Ellerby L M, et al. Nat Med, 1999, 5: 1032-1038.
[8] Curnis F, Sacchi A, Borgna L, et al. Nat Biotechnol, 2000, 18: 1185-1190.
[9] Sacchi A, Gasparri A, Curnism F, et alCancer Res, 2004, 64: 7150-7155.
[10] Wikstrand C J, Hale L P, Batra S K, et al. Cancer Res, 1995, 55: 3140-3148.
[11] Geissler F, Anderson S K, Venkatesan P, et al. Cancer Res, 1992, 52: 2907-2915.
[12] Hart S L, Knight A M, Harbottle R P, et al. J Biol Chem, 1994, 269: 12468-12474.
[13] Stein R, Govindan S V, Mattes M J, et al. Cancer Res, 2003, 63: 111-118.
[14] Govindan SV, Mattes MJ, Stein R, et al. Bioconjugate Chem, 1999, 10: 231-240.
[15] Reist CJ, Garg P K, Alston K L, et al. Cancer Res, 1996, 56: 4970-4977.
[16] Foulon C F, Reist C J, Bigner D D, et al. Cancer Res, 2000, 60: 4453-4460.
[17] Foulon C F, Welsh PC, Bigner D D, et al. Nucl Med Biol, 2001, 28: 769-777.
[18] Reist C J, Archer GE, Wikstrand C J, et al. Cancer Res, 1997, 57: 1510-1515.
[19] Shankar S, Vaidyanathan G, Affleck D J, et al. Nucl Med Biol, 2004, 31: 909-919.
[20] Sun X, Chu T W, Liu X Q, et al. Appl Radiat Isot, 2006, 64: 645-650.
[21] Curnis F, Arrigoni G, Sacchi A, et al. Cancer Res, 2002, 62: 867-874.
[22] Amartey J K, Esguerra C, Ai-Otaibi B, et al. Appl Radiat Isot, 2005, 62: 39-47.